Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodiamlt GIF version

Theorem icodiamlt 10903
 Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 7775 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 9671 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
3 elico2 9671 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐷 ∈ (𝐴[,)𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)))
42, 3anbi12d 462 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) ↔ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
54biimpd 143 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
61, 5sylan2 282 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
7 simplr 502 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℝ)
87recnd 7758 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℂ)
9 simpll 501 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℝ)
109recnd 7758 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℂ)
118, 10negsubdi2d 8053 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) = (𝐴𝐵))
129, 7resubcld 8107 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ∈ ℝ)
13 simprl1 1009 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 ∈ ℝ)
1413, 7resubcld 8107 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) ∈ ℝ)
15 simprr1 1012 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 ∈ ℝ)
1613, 15resubcld 8107 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) ∈ ℝ)
17 simprl2 1010 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐶)
189, 13, 7, 17lesub1dd 8286 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ≤ (𝐶𝐵))
19 simprr3 1014 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 < 𝐵)
2015, 7, 13, 19ltsub2dd 8283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) < (𝐶𝐷))
2112, 14, 16, 18, 20lelttrd 7851 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) < (𝐶𝐷))
2211, 21eqbrtrd 3918 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) < (𝐶𝐷))
237, 15resubcld 8107 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ∈ ℝ)
247, 9resubcld 8107 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐴) ∈ ℝ)
25 simprl3 1011 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 < 𝐵)
2613, 7, 15, 25ltsub1dd 8282 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐷))
27 simprr2 1013 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐷)
289, 15, 7, 27lesub2dd 8287 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ≤ (𝐵𝐴))
2916, 23, 24, 26, 28ltletrd 8149 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐴))
3016, 24absltd 10897 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → ((abs‘(𝐶𝐷)) < (𝐵𝐴) ↔ (-(𝐵𝐴) < (𝐶𝐷) ∧ (𝐶𝐷) < (𝐵𝐴))))
3122, 29, 30mpbir2and 911 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
3231ex 114 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
336, 32syld 45 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
3433imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 945   ∈ wcel 1463   class class class wbr 3897  ‘cfv 5091  (class class class)co 5740  ℝcr 7583  ℝ*cxr 7763   < clt 7764   ≤ cle 7765   − cmin 7897  -cneg 7898  [,)cico 9624  abscabs 10720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-rp 9394  df-ico 9628  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator