ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodiamlt GIF version

Theorem icodiamlt 11092
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 7926 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 9848 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
3 elico2 9848 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐷 ∈ (𝐴[,)𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)))
42, 3anbi12d 465 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) ↔ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
54biimpd 143 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
61, 5sylan2 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
7 simplr 520 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℝ)
87recnd 7909 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℂ)
9 simpll 519 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℝ)
109recnd 7909 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℂ)
118, 10negsubdi2d 8207 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) = (𝐴𝐵))
129, 7resubcld 8261 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ∈ ℝ)
13 simprl1 1027 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 ∈ ℝ)
1413, 7resubcld 8261 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) ∈ ℝ)
15 simprr1 1030 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 ∈ ℝ)
1613, 15resubcld 8261 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) ∈ ℝ)
17 simprl2 1028 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐶)
189, 13, 7, 17lesub1dd 8441 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ≤ (𝐶𝐵))
19 simprr3 1032 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 < 𝐵)
2015, 7, 13, 19ltsub2dd 8438 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) < (𝐶𝐷))
2112, 14, 16, 18, 20lelttrd 8005 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) < (𝐶𝐷))
2211, 21eqbrtrd 3989 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) < (𝐶𝐷))
237, 15resubcld 8261 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ∈ ℝ)
247, 9resubcld 8261 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐴) ∈ ℝ)
25 simprl3 1029 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 < 𝐵)
2613, 7, 15, 25ltsub1dd 8437 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐷))
27 simprr2 1031 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐷)
289, 15, 7, 27lesub2dd 8442 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ≤ (𝐵𝐴))
2916, 23, 24, 26, 28ltletrd 8303 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐴))
3016, 24absltd 11086 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → ((abs‘(𝐶𝐷)) < (𝐵𝐴) ↔ (-(𝐵𝐴) < (𝐶𝐷) ∧ (𝐶𝐷) < (𝐵𝐴))))
3122, 29, 30mpbir2and 929 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
3231ex 114 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
336, 32syld 45 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
3433imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wcel 2128   class class class wbr 3967  cfv 5173  (class class class)co 5827  cr 7734  *cxr 7914   < clt 7915  cle 7916  cmin 8051  -cneg 8052  [,)cico 9801  abscabs 10909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-rp 9568  df-ico 9805  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator