ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodiamlt GIF version

Theorem icodiamlt 11566
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 8138 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 10079 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
3 elico2 10079 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐷 ∈ (𝐴[,)𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)))
42, 3anbi12d 473 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) ↔ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
54biimpd 144 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
61, 5sylan2 286 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
7 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℝ)
87recnd 8121 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℂ)
9 simpll 527 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℝ)
109recnd 8121 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℂ)
118, 10negsubdi2d 8419 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) = (𝐴𝐵))
129, 7resubcld 8473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ∈ ℝ)
13 simprl1 1045 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 ∈ ℝ)
1413, 7resubcld 8473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) ∈ ℝ)
15 simprr1 1048 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 ∈ ℝ)
1613, 15resubcld 8473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) ∈ ℝ)
17 simprl2 1046 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐶)
189, 13, 7, 17lesub1dd 8654 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ≤ (𝐶𝐵))
19 simprr3 1050 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 < 𝐵)
2015, 7, 13, 19ltsub2dd 8651 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) < (𝐶𝐷))
2112, 14, 16, 18, 20lelttrd 8217 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) < (𝐶𝐷))
2211, 21eqbrtrd 4073 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) < (𝐶𝐷))
237, 15resubcld 8473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ∈ ℝ)
247, 9resubcld 8473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐴) ∈ ℝ)
25 simprl3 1047 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 < 𝐵)
2613, 7, 15, 25ltsub1dd 8650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐷))
27 simprr2 1049 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐷)
289, 15, 7, 27lesub2dd 8655 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ≤ (𝐵𝐴))
2916, 23, 24, 26, 28ltletrd 8516 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐴))
3016, 24absltd 11560 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → ((abs‘(𝐶𝐷)) < (𝐵𝐴) ↔ (-(𝐵𝐴) < (𝐶𝐷) ∧ (𝐶𝐷) < (𝐵𝐴))))
3122, 29, 30mpbir2and 947 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
3231ex 115 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
336, 32syld 45 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
3433imp 124 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cr 7944  *cxr 8126   < clt 8127  cle 8128  cmin 8263  -cneg 8264  [,)cico 10032  abscabs 11383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-ico 10036  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator