ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodc GIF version

Theorem summodc 10991
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
summodc.3 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodc (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚,𝑥,𝑘,𝑛   𝑥,𝐴,𝑗   𝐵,𝑓,𝑗,𝑚   𝑗,𝐹,𝑥   𝑛,𝐺,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝐺(𝑓,𝑗,𝑘,𝑚)

Proof of Theorem summodc
Dummy variables 𝑎 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5353 . . . . . . . . . 10 (𝑚 = 𝑛 → (ℤ𝑚) = (ℤ𝑛))
21sseq2d 3077 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑛)))
31raleqdv 2590 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴))
4 seqeq1 10062 . . . . . . . . . 10 (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹))
54breq1d 3885 . . . . . . . . 9 (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦))
62, 3, 53anbi123d 1258 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
76cbvrexv 2613 . . . . . . 7 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))
8 reeanv 2558 . . . . . . . . 9 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
9 simprl3 996 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥)
10 isummo.1 . . . . . . . . . . . . . 14 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
11 simpll 499 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝜑)
12 isummo.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1311, 12sylan 279 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
14 simplrl 505 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ)
15 simplrr 506 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ)
16 simprl1 994 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑚))
17 simprr1 997 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑛))
18 eleq1w 2160 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1918dcbid 792 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
20 simprl2 995 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
2120adantr 272 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
22 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ (ℤ𝑚))
2319, 21, 22rspcdva 2749 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → DECID 𝑘𝐴)
24 simprr2 998 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
2524adantr 272 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
26 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
2719, 25, 26rspcdva 2749 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → DECID 𝑘𝐴)
2810, 13, 14, 15, 16, 17, 23, 27sumrbdc 10986 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥))
299, 28mpbid 146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥)
30 simprr3 999 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦)
31 climuni 10901 . . . . . . . . . . . 12 ((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)
3229, 30, 31syl2anc 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦)
3332exp31 359 . . . . . . . . . 10 (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)))
3433rexlimdvv 2515 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
358, 34syl5bir 152 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
3635expdimp 257 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
377, 36syl5bi 151 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
38 summodc.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
3910, 12, 38summodclem2 10990 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4037, 39jaod 678 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
4110, 12, 38summodclem2 10990 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥))
42 equcom 1650 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
4341, 42syl6ib 160 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4443impancom 258 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
45 oveq2 5714 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
46 f1oeq2 5293 . . . . . . . . . . . 12 ((1...𝑚) = (1...𝑛) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
4745, 46syl 14 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
48 fveq2 5353 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛))
4948eqeq2d 2111 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛)))
5047, 49anbi12d 460 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
5150exbidv 1764 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
52 f1oeq1 5292 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴))
53 breq1 3878 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴)))
54 fveq2 5353 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → (𝑓𝑛) = (𝑓𝑎))
5554csbeq1d 2961 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑎) / 𝑘𝐵)
5653, 55ifbieq1d 3441 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
5756cbvmptv 3964 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
58 fveq1 5352 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓𝑎) = (𝑔𝑎))
5958csbeq1d 2961 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔(𝑓𝑎) / 𝑘𝐵 = (𝑔𝑎) / 𝑘𝐵)
6059ifeq1d 3436 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))
6160mpteq2dv 3959 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6257, 61syl5eq 2144 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6338, 62syl5eq 2144 . . . . . . . . . . . . . 14 (𝑓 = 𝑔𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6463seqeq3d 10067 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))))
6564fveq1d 5355 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
6665eqeq2d 2111 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
6752, 66anbi12d 460 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
6867cbvexv 1855 . . . . . . . . 9 (∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
6951, 68syl6bb 195 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
7069cbvrexv 2613 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
71 reeanv 2558 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
72 eeanv 1867 . . . . . . . . . . 11 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
73 an4 556 . . . . . . . . . . . . 13 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
74 1zzd 8933 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 1 ∈ ℤ)
75 simplrr 506 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ)
7675nnzd 9024 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℤ)
7774, 76fzfigd 10045 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑛) ∈ Fin)
78 simprr 502 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑔:(1...𝑛)–1-1-onto𝐴)
7977, 78fihasheqf1od 10377 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = (♯‘𝐴))
8075nnnn0d 8882 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ0)
81 hashfz1 10370 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
8280, 81syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = 𝑛)
8379, 82eqtr3d 2134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) = 𝑛)
8483breq2d 3887 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ≤ (♯‘𝐴) ↔ 𝑎𝑛))
8584ifbid 3440 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0))
8685mpteq2dv 3959 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))
8786seqeq3d 10067 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0))))
8887fveq1d 5355 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
8988eqeq2d 2111 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
9089anbi2d 455 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) ↔ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
91 simplrl 505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
9291nnnn0d 8882 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ0)
93 hashfz1 10370 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
9492, 93syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = 𝑚)
9591nnzd 9024 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
9674, 95fzfigd 10045 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
97 simprl 501 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
9896, 97fihasheqf1od 10377 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = (♯‘𝐴))
9994, 98eqtr3d 2134 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 = (♯‘𝐴))
10099fveq2d 5357 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘(♯‘𝐴)))
101 simpll 499 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝜑)
102101, 12sylan 279 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10399, 91eqeltrrd 2177 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
104103, 75jca 302 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((♯‘𝐴) ∈ ℕ ∧ 𝑛 ∈ ℕ))
10599oveq2d 5722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) = (1...(♯‘𝐴)))
106 f1oeq2 5293 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑚) = (1...(♯‘𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
107105, 106syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
10897, 107mpbid 146 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
109 breq1 3878 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
110 fveq2 5353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
111110csbeq1d 2961 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
112109, 111ifbieq1d 3441 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
113112cbvmptv 3964 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
11438, 113eqtri 2120 . . . . . . . . . . . . . . . . . 18 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
115 breq1 3878 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗 → (𝑎𝑛𝑗𝑛))
116 fveq2 5353 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑗 → (𝑔𝑎) = (𝑔𝑗))
117116csbeq1d 2961 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗(𝑔𝑎) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
118115, 117ifbieq1d 3441 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑗 → if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
119118cbvmptv 3964 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
12010, 102, 104, 108, 78, 114, 119summodclem3 10988 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
121100, 120eqtrd 2132 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
122 eqeq12 2112 . . . . . . . . . . . . . . . 16 ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
123121, 122syl5ibrcom 156 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
12490, 123sylbid 149 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
125124expimpd 358 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
12673, 125syl5bi 151 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
127126exlimdvv 1836 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
12872, 127syl5bir 152 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
129128rexlimdvva 2516 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
13071, 129syl5bir 152 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
131130expdimp 257 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
13270, 131syl5bi 151 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
13344, 132jaod 678 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
13440, 133jaodan 752 . . . 4 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
135134expimpd 358 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
136135alrimivv 1814 . 2 (𝜑 → ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
137 breq2 3879 . . . . . 6 (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦))
1381373anbi3d 1264 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
139138rexbidv 2397 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
140 eqeq1 2106 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚)))
141140anbi2d 455 . . . . . 6 (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
142141exbidv 1764 . . . . 5 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
143142rexbidv 2397 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
144139, 143orbi12d 748 . . 3 (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))))
145144mo4 2021 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
146136, 145sylibr 133 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 670  DECID wdc 786  w3a 930  wal 1297   = wceq 1299  wex 1436  wcel 1448  ∃*wmo 1961  wral 2375  wrex 2376  csb 2955  wss 3021  ifcif 3421   class class class wbr 3875  cmpt 3929  1-1-ontowf1o 5058  cfv 5059  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   + caddc 7503  cle 7673  cn 8578  0cn0 8829  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059  chash 10362  cli 10886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887
This theorem is referenced by:  fsum3  10995
  Copyright terms: Public domain W3C validator