ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodc GIF version

Theorem summodc 11526
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
summodc.3 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodc (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚,𝑥,𝑘,𝑛   𝑥,𝐴,𝑗   𝐵,𝑓,𝑗,𝑚   𝑗,𝐹,𝑥   𝑛,𝐺,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝐺(𝑓,𝑗,𝑘,𝑚)

Proof of Theorem summodc
Dummy variables 𝑎 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . . . . . . 10 (𝑚 = 𝑛 → (ℤ𝑚) = (ℤ𝑛))
21sseq2d 3209 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑛)))
31raleqdv 2696 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴))
4 seqeq1 10521 . . . . . . . . . 10 (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹))
54breq1d 4039 . . . . . . . . 9 (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦))
62, 3, 53anbi123d 1323 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
76cbvrexv 2727 . . . . . . 7 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))
8 reeanv 2664 . . . . . . . . 9 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
9 simprl3 1046 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥)
10 isummo.1 . . . . . . . . . . . . . 14 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
11 simpll 527 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝜑)
12 isummo.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1311, 12sylan 283 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
14 simplrl 535 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ)
15 simplrr 536 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ)
16 simprl1 1044 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑚))
17 simprr1 1047 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑛))
18 eleq1w 2254 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1918dcbid 839 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
20 simprl2 1045 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
2120adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
22 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ (ℤ𝑚))
2319, 21, 22rspcdva 2869 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → DECID 𝑘𝐴)
24 simprr2 1048 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
2524adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
26 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
2719, 25, 26rspcdva 2869 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → DECID 𝑘𝐴)
2810, 13, 14, 15, 16, 17, 23, 27sumrbdc 11522 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥))
299, 28mpbid 147 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥)
30 simprr3 1049 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦)
31 climuni 11436 . . . . . . . . . . . 12 ((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)
3229, 30, 31syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦)
3332exp31 364 . . . . . . . . . 10 (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)))
3433rexlimdvv 2618 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
358, 34biimtrrid 153 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
3635expdimp 259 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
377, 36biimtrid 152 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
38 summodc.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
3910, 12, 38summodclem2 11525 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4037, 39jaod 718 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
4110, 12, 38summodclem2 11525 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥))
42 equcom 1717 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
4341, 42imbitrdi 161 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4443impancom 260 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
45 oveq2 5926 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
46 f1oeq2 5489 . . . . . . . . . . . 12 ((1...𝑚) = (1...𝑛) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
4745, 46syl 14 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
48 fveq2 5554 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛))
4948eqeq2d 2205 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛)))
5047, 49anbi12d 473 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
5150exbidv 1836 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
52 f1oeq1 5488 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴))
53 breq1 4032 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴)))
54 fveq2 5554 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → (𝑓𝑛) = (𝑓𝑎))
5554csbeq1d 3087 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑎) / 𝑘𝐵)
5653, 55ifbieq1d 3579 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
5756cbvmptv 4125 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
58 fveq1 5553 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓𝑎) = (𝑔𝑎))
5958csbeq1d 3087 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔(𝑓𝑎) / 𝑘𝐵 = (𝑔𝑎) / 𝑘𝐵)
6059ifeq1d 3574 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))
6160mpteq2dv 4120 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6257, 61eqtrid 2238 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6338, 62eqtrid 2238 . . . . . . . . . . . . . 14 (𝑓 = 𝑔𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6463seqeq3d 10526 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))))
6564fveq1d 5556 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
6665eqeq2d 2205 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
6752, 66anbi12d 473 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
6867cbvexv 1930 . . . . . . . . 9 (∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
6951, 68bitrdi 196 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
7069cbvrexv 2727 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
71 reeanv 2664 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
72 eeanv 1948 . . . . . . . . . . 11 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
73 an4 586 . . . . . . . . . . . . 13 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
74 1zzd 9344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 1 ∈ ℤ)
75 simplrr 536 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ)
7675nnzd 9438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℤ)
7774, 76fzfigd 10502 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑛) ∈ Fin)
78 simprr 531 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑔:(1...𝑛)–1-1-onto𝐴)
7977, 78fihasheqf1od 10860 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = (♯‘𝐴))
8075nnnn0d 9293 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ0)
81 hashfz1 10854 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
8280, 81syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = 𝑛)
8379, 82eqtr3d 2228 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) = 𝑛)
8483breq2d 4041 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ≤ (♯‘𝐴) ↔ 𝑎𝑛))
8584ifbid 3578 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0))
8685mpteq2dv 4120 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))
8786seqeq3d 10526 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0))))
8887fveq1d 5556 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
8988eqeq2d 2205 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
9089anbi2d 464 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) ↔ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))))
91 simplrl 535 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
9291nnnn0d 9293 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ0)
93 hashfz1 10854 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
9492, 93syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = 𝑚)
9591nnzd 9438 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
9674, 95fzfigd 10502 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
97 simprl 529 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
9896, 97fihasheqf1od 10860 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = (♯‘𝐴))
9994, 98eqtr3d 2228 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 = (♯‘𝐴))
10099fveq2d 5558 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘(♯‘𝐴)))
101 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝜑)
102101, 12sylan 283 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10399, 91eqeltrrd 2271 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
104103, 75jca 306 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((♯‘𝐴) ∈ ℕ ∧ 𝑛 ∈ ℕ))
10599oveq2d 5934 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) = (1...(♯‘𝐴)))
106 f1oeq2 5489 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑚) = (1...(♯‘𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
107105, 106syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
10897, 107mpbid 147 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
109 breq1 4032 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
110 fveq2 5554 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
111110csbeq1d 3087 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
112109, 111ifbieq1d 3579 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
113112cbvmptv 4125 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
11438, 113eqtri 2214 . . . . . . . . . . . . . . . . . 18 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
115 breq1 4032 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗 → (𝑎𝑛𝑗𝑛))
116 fveq2 5554 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑗 → (𝑔𝑎) = (𝑔𝑗))
117116csbeq1d 3087 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗(𝑔𝑎) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
118115, 117ifbieq1d 3579 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑗 → if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
119118cbvmptv 4125 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
12010, 102, 104, 108, 78, 114, 119summodclem3 11523 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
121100, 120eqtrd 2226 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))
122 eqeq12 2206 . . . . . . . . . . . . . . . 16 ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)))
123121, 122syl5ibrcom 157 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
12490, 123sylbid 150 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
125124expimpd 363 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
12673, 125biimtrid 152 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
127126exlimdvv 1909 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
12872, 127biimtrrid 153 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
129128rexlimdvva 2619 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
13071, 129biimtrrid 153 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦))
131130expdimp 259 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦))
13270, 131biimtrid 152 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
13344, 132jaod 718 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
13440, 133jaodan 798 . . . 4 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
135134expimpd 363 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
136135alrimivv 1886 . 2 (𝜑 → ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
137 breq2 4033 . . . . . 6 (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦))
1381373anbi3d 1329 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
139138rexbidv 2495 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
140 eqeq1 2200 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚)))
141140anbi2d 464 . . . . . 6 (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
142141exbidv 1836 . . . . 5 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
143142rexbidv 2495 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
144139, 143orbi12d 794 . . 3 (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))))
145144mo4 2103 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
146136, 145sylibr 134 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980  wal 1362   = wceq 1364  wex 1503  ∃*wmo 2043  wcel 2164  wral 2472  wrex 2473  csb 3080  wss 3153  ifcif 3557   class class class wbr 4029  cmpt 4090  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875  cle 8055  cn 8982  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  chash 10846  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  fsum3  11530
  Copyright terms: Public domain W3C validator