| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑛)) |
| 2 | 1 | sseq2d 3213 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑛))) |
| 3 | 1 | raleqdv 2699 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴)) |
| 4 | | seqeq1 10542 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹)) |
| 5 | 4 | breq1d 4043 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
| 6 | 2, 3, 5 | 3anbi123d 1323 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
| 7 | 6 | cbvrexv 2730 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
| 8 | | reeanv 2667 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
| 9 | | simprl3 1046 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥) |
| 10 | | isummo.1 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 11 | | simpll 527 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝜑) |
| 12 | | isummo.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 13 | 11, 12 | sylan 283 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 14 | | simplrl 535 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ) |
| 15 | | simplrr 536 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ) |
| 16 | | simprl1 1044 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 17 | | simprr1 1047 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑛)) |
| 18 | | eleq1w 2257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 19 | 18 | dcbid 839 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 20 | | simprl2 1045 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 21 | 20 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 22 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → 𝑘 ∈ (ℤ≥‘𝑚)) |
| 23 | 19, 21, 22 | rspcdva 2873 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → DECID
𝑘 ∈ 𝐴) |
| 24 | | simprr2 1048 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴) |
| 25 | 24 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴) |
| 26 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ (ℤ≥‘𝑛)) |
| 27 | 19, 25, 26 | rspcdva 2873 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → DECID
𝑘 ∈ 𝐴) |
| 28 | 10, 13, 14, 15, 16, 17, 23, 27 | sumrbdc 11544 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥)) |
| 29 | 9, 28 | mpbid 147 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥) |
| 30 | | simprr3 1049 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦) |
| 31 | | climuni 11458 |
. . . . . . . . . . . 12
⊢
((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦) |
| 32 | 29, 30, 31 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦) |
| 33 | 32 | exp31 364 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))) |
| 34 | 33 | rexlimdvv 2621 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
| 35 | 8, 34 | biimtrrid 153 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
| 36 | 35 | expdimp 259 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 37 | 7, 36 | biimtrid 152 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 38 | | summodc.3 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
| 39 | 10, 12, 38 | summodclem2 11547 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 40 | 37, 39 | jaod 718 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 41 | 10, 12, 38 | summodclem2 11547 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥)) |
| 42 | | equcom 1720 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 43 | 41, 42 | imbitrdi 161 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 44 | 43 | impancom 260 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 45 | | oveq2 5930 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
| 46 | | f1oeq2 5493 |
. . . . . . . . . . . 12
⊢
((1...𝑚) =
(1...𝑛) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) |
| 47 | 45, 46 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) |
| 48 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛)) |
| 49 | 48 | eqeq2d 2208 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛))) |
| 50 | 47, 49 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
| 51 | 50 | exbidv 1839 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
| 52 | | f1oeq1 5492 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑛)–1-1-onto→𝐴)) |
| 53 | | breq1 4036 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴))) |
| 54 | | fveq2 5558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑎 → (𝑓‘𝑛) = (𝑓‘𝑎)) |
| 55 | 54 | csbeq1d 3091 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
| 56 | 53, 55 | ifbieq1d 3583 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) |
| 57 | 56 | cbvmptv 4129 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) |
| 58 | | fveq1 5557 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓‘𝑎) = (𝑔‘𝑎)) |
| 59 | 58 | csbeq1d 3091 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑎) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
| 60 | 59 | ifeq1d 3578 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) |
| 61 | 60 | mpteq2dv 4124 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
| 62 | 57, 61 | eqtrid 2241 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
| 63 | 38, 62 | eqtrid 2241 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
| 64 | 63 | seqeq3d 10547 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))) |
| 65 | 64 | fveq1d 5560 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
| 66 | 65 | eqeq2d 2208 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
| 67 | 52, 66 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 68 | 67 | cbvexv 1933 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
| 69 | 51, 68 | bitrdi 196 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 70 | 69 | cbvrexv 2730 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
| 71 | | reeanv 2667 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑛 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 72 | | eeanv 1951 |
. . . . . . . . . . 11
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 73 | | an4 586 |
. . . . . . . . . . . . 13
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 74 | | 1zzd 9353 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 1 ∈
ℤ) |
| 75 | | simplrr 536 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℕ) |
| 76 | 75 | nnzd 9447 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℤ) |
| 77 | 74, 76 | fzfigd 10523 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑛) ∈ Fin) |
| 78 | | simprr 531 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑔:(1...𝑛)–1-1-onto→𝐴) |
| 79 | 77, 78 | fihasheqf1od 10881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑛)) =
(♯‘𝐴)) |
| 80 | 75 | nnnn0d 9302 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℕ0) |
| 81 | | hashfz1 10875 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ0
→ (♯‘(1...𝑛)) = 𝑛) |
| 82 | 80, 81 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑛)) =
𝑛) |
| 83 | 79, 82 | eqtr3d 2231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (♯‘𝐴) = 𝑛) |
| 84 | 83 | breq2d 4045 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑎 ≤ (♯‘𝐴) ↔ 𝑎 ≤ 𝑛)) |
| 85 | 84 | ifbid 3582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) |
| 86 | 85 | mpteq2dv 4124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
| 87 | 86 | seqeq3d 10547 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))) |
| 88 | 87 | fveq1d 5560 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
| 89 | 88 | eqeq2d 2208 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
| 90 | 89 | anbi2d 464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) ↔ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
| 91 | | simplrl 535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) |
| 92 | 91 | nnnn0d 9302 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ0) |
| 93 | | hashfz1 10875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
| 94 | 92, 93 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑚)) =
𝑚) |
| 95 | 91 | nnzd 9447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) |
| 96 | 74, 95 | fzfigd 10523 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) |
| 97 | | simprl 529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 98 | 96, 97 | fihasheqf1od 10881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) |
| 99 | 94, 98 | eqtr3d 2231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 = (♯‘𝐴)) |
| 100 | 99 | fveq2d 5562 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘(♯‘𝐴))) |
| 101 | | simpll 527 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝜑) |
| 102 | 101, 12 | sylan 283 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 103 | 99, 91 | eqeltrrd 2274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
| 104 | 103, 75 | jca 306 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((♯‘𝐴) ∈ ℕ ∧ 𝑛 ∈
ℕ)) |
| 105 | 99 | oveq2d 5938 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑚) = (1...(♯‘𝐴))) |
| 106 | | f1oeq2 5493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑚) =
(1...(♯‘𝐴))
→ (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 107 | 105, 106 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 108 | 97, 107 | mpbid 147 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 109 | | breq1 4036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴))) |
| 110 | | fveq2 5558 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
| 111 | 110 | csbeq1d 3091 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
| 112 | 109, 111 | ifbieq1d 3583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
| 113 | 112 | cbvmptv 4129 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
| 114 | 38, 113 | eqtri 2217 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
| 115 | | breq1 4036 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑗 → (𝑎 ≤ 𝑛 ↔ 𝑗 ≤ 𝑛)) |
| 116 | | fveq2 5558 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑗 → (𝑔‘𝑎) = (𝑔‘𝑗)) |
| 117 | 116 | csbeq1d 3091 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑗 → ⦋(𝑔‘𝑎) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
| 118 | 115, 117 | ifbieq1d 3583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑗 → if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑗 ≤ 𝑛, ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 0)) |
| 119 | 118 | cbvmptv 4129 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ 𝑛, ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 0)) |
| 120 | 10, 102, 104, 108, 78, 114, 119 | summodclem3 11545 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
| 121 | 100, 120 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
| 122 | | eqeq12 2209 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
| 123 | 121, 122 | syl5ibrcom 157 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
| 124 | 90, 123 | sylbid 150 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
| 125 | 124 | expimpd 363 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 126 | 73, 125 | biimtrid 152 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 127 | 126 | exlimdvv 1912 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 128 | 72, 127 | biimtrrid 153 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 129 | 128 | rexlimdvva 2622 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 130 | 71, 129 | biimtrrid 153 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
| 131 | 130 | expdimp 259 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
| 132 | 70, 131 | biimtrid 152 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 133 | 44, 132 | jaod 718 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 134 | 40, 133 | jaodan 798 |
. . . 4
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 135 | 134 | expimpd 363 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 136 | 135 | alrimivv 1889 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 137 | | breq2 4037 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦)) |
| 138 | 137 | 3anbi3d 1329 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
| 139 | 138 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
| 140 | | eqeq1 2203 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚))) |
| 141 | 140 | anbi2d 464 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 142 | 141 | exbidv 1839 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 143 | 142 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 144 | 139, 143 | orbi12d 794 |
. . 3
⊢ (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))))) |
| 145 | 144 | mo4 2106 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 146 | 136, 145 | sylibr 134 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |