Step | Hyp | Ref
| Expression |
1 | | fveq2 5494 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑛)) |
2 | 1 | sseq2d 3177 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑛))) |
3 | 1 | raleqdv 2671 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴)) |
4 | | seqeq1 10397 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹)) |
5 | 4 | breq1d 3997 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
6 | 2, 3, 5 | 3anbi123d 1307 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
7 | 6 | cbvrexv 2697 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
8 | | reeanv 2639 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
9 | | simprl3 1039 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥) |
10 | | isummo.1 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
11 | | simpll 524 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝜑) |
12 | | isummo.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
13 | 11, 12 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | | simplrl 530 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ) |
15 | | simplrr 531 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ) |
16 | | simprl1 1037 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
17 | | simprr1 1040 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑛)) |
18 | | eleq1w 2231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
19 | 18 | dcbid 833 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
20 | | simprl2 1038 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
21 | 20 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
22 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → 𝑘 ∈ (ℤ≥‘𝑚)) |
23 | 19, 21, 22 | rspcdva 2839 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → DECID
𝑘 ∈ 𝐴) |
24 | | simprr2 1041 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴) |
25 | 24 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴) |
26 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ (ℤ≥‘𝑛)) |
27 | 19, 25, 26 | rspcdva 2839 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → DECID
𝑘 ∈ 𝐴) |
28 | 10, 13, 14, 15, 16, 17, 23, 27 | sumrbdc 11335 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥)) |
29 | 9, 28 | mpbid 146 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥) |
30 | | simprr3 1042 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦) |
31 | | climuni 11249 |
. . . . . . . . . . . 12
⊢
((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦) |
32 | 29, 30, 31 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦) |
33 | 32 | exp31 362 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))) |
34 | 33 | rexlimdvv 2594 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
35 | 8, 34 | syl5bir 152 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
36 | 35 | expdimp 257 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ ∀𝑗 ∈
(ℤ≥‘𝑛)DECID 𝑗 ∈ 𝐴 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
37 | 7, 36 | syl5bi 151 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
38 | | summodc.3 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
39 | 10, 12, 38 | summodclem2 11338 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
40 | 37, 39 | jaod 712 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
41 | 10, 12, 38 | summodclem2 11338 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥)) |
42 | | equcom 1699 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
43 | 41, 42 | syl6ib 160 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
44 | 43 | impancom 258 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
45 | | oveq2 5859 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
46 | | f1oeq2 5430 |
. . . . . . . . . . . 12
⊢
((1...𝑚) =
(1...𝑛) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) |
47 | 45, 46 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) |
48 | | fveq2 5494 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛)) |
49 | 48 | eqeq2d 2182 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛))) |
50 | 47, 49 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
51 | 50 | exbidv 1818 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
52 | | f1oeq1 5429 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑛)–1-1-onto→𝐴)) |
53 | | breq1 3990 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴))) |
54 | | fveq2 5494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑎 → (𝑓‘𝑛) = (𝑓‘𝑎)) |
55 | 54 | csbeq1d 3056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
56 | 53, 55 | ifbieq1d 3547 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) |
57 | 56 | cbvmptv 4083 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) |
58 | | fveq1 5493 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓‘𝑎) = (𝑔‘𝑎)) |
59 | 58 | csbeq1d 3056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑎) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
60 | 59 | ifeq1d 3542 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) |
61 | 60 | mpteq2dv 4078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
62 | 57, 61 | eqtrid 2215 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
63 | 38, 62 | eqtrid 2215 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
64 | 63 | seqeq3d 10402 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))) |
65 | 64 | fveq1d 5496 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
66 | 65 | eqeq2d 2182 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
67 | 52, 66 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
68 | 67 | cbvexv 1911 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
69 | 51, 68 | bitrdi 195 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
70 | 69 | cbvrexv 2697 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
71 | | reeanv 2639 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑛 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
72 | | eeanv 1925 |
. . . . . . . . . . 11
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
73 | | an4 581 |
. . . . . . . . . . . . 13
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
74 | | 1zzd 9232 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 1 ∈
ℤ) |
75 | | simplrr 531 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℕ) |
76 | 75 | nnzd 9326 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℤ) |
77 | 74, 76 | fzfigd 10380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑛) ∈ Fin) |
78 | | simprr 527 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑔:(1...𝑛)–1-1-onto→𝐴) |
79 | 77, 78 | fihasheqf1od 10717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑛)) =
(♯‘𝐴)) |
80 | 75 | nnnn0d 9181 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑛 ∈ ℕ0) |
81 | | hashfz1 10710 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ0
→ (♯‘(1...𝑛)) = 𝑛) |
82 | 80, 81 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑛)) =
𝑛) |
83 | 79, 82 | eqtr3d 2205 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (♯‘𝐴) = 𝑛) |
84 | 83 | breq2d 3999 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑎 ≤ (♯‘𝐴) ↔ 𝑎 ≤ 𝑛)) |
85 | 84 | ifbid 3546 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) |
86 | 85 | mpteq2dv 4078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) |
87 | 86 | seqeq3d 10402 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))) |
88 | 87 | fveq1d 5496 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
89 | 88 | eqeq2d 2182 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
90 | 89 | anbi2d 461 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) ↔ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)))) |
91 | | simplrl 530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) |
92 | 91 | nnnn0d 9181 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ0) |
93 | | hashfz1 10710 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
94 | 92, 93 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑚)) =
𝑚) |
95 | 91 | nnzd 9326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) |
96 | 74, 95 | fzfigd 10380 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) |
97 | | simprl 526 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
98 | 96, 97 | fihasheqf1od 10717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) |
99 | 94, 98 | eqtr3d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑚 = (♯‘𝐴)) |
100 | 99 | fveq2d 5498 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘(♯‘𝐴))) |
101 | | simpll 524 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝜑) |
102 | 101, 12 | sylan 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
103 | 99, 91 | eqeltrrd 2248 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
104 | 103, 75 | jca 304 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((♯‘𝐴) ∈ ℕ ∧ 𝑛 ∈
ℕ)) |
105 | 99 | oveq2d 5867 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (1...𝑚) = (1...(♯‘𝐴))) |
106 | | f1oeq2 5430 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑚) =
(1...(♯‘𝐴))
→ (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
107 | 105, 106 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
108 | 97, 107 | mpbid 146 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
109 | | breq1 3990 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴))) |
110 | | fveq2 5494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
111 | 110 | csbeq1d 3056 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
112 | 109, 111 | ifbieq1d 3547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
113 | 112 | cbvmptv 4083 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
114 | 38, 113 | eqtri 2191 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 0)) |
115 | | breq1 3990 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑗 → (𝑎 ≤ 𝑛 ↔ 𝑗 ≤ 𝑛)) |
116 | | fveq2 5494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑗 → (𝑔‘𝑎) = (𝑔‘𝑗)) |
117 | 116 | csbeq1d 3056 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑗 → ⦋(𝑔‘𝑎) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
118 | 115, 117 | ifbieq1d 3547 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑗 → if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0) = if(𝑗 ≤ 𝑛, ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 0)) |
119 | 118 | cbvmptv 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ 𝑛, ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 0)) |
120 | 10, 102, 104, 108, 78, 114, 119 | summodclem3 11336 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
121 | 100, 120 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) |
122 | | eqeq12 2183 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) |
123 | 121, 122 | syl5ibrcom 156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ 𝑛, ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
124 | 90, 123 | sylbid 149 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
125 | 124 | expimpd 361 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
126 | 73, 125 | syl5bi 151 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
127 | 126 | exlimdvv 1890 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
128 | 72, 127 | syl5bir 152 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
129 | 128 | rexlimdvva 2595 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
130 | 71, 129 | syl5bir 152 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛))) → 𝑥 = 𝑦)) |
131 | 130 | expdimp 257 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 0)))‘𝑛)) → 𝑥 = 𝑦)) |
132 | 70, 131 | syl5bi 151 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
133 | 44, 132 | jaod 712 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
134 | 40, 133 | jaodan 792 |
. . . 4
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
135 | 134 | expimpd 361 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
136 | 135 | alrimivv 1868 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
137 | | breq2 3991 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦)) |
138 | 137 | 3anbi3d 1313 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
139 | 138 | rexbidv 2471 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
140 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚))) |
141 | 140 | anbi2d 461 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
142 | 141 | exbidv 1818 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
143 | 142 | rexbidv 2471 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
144 | 139, 143 | orbi12d 788 |
. . 3
⊢ (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))))) |
145 | 144 | mo4 2080 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
146 | 136, 145 | sylibr 133 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |