Step | Hyp | Ref
| Expression |
1 | | ivthreinc.4 |
. . . 4
⊢ (𝜑 → 𝐴 < 𝐵) |
2 | | eqid 2193 |
. . . . . 6
⊢ (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) |
3 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑟 = 𝐴 → (𝐹‘𝑟) = (𝐹‘𝐴)) |
4 | 3 | oveq1d 5933 |
. . . . . 6
⊢ (𝑟 = 𝐴 → ((𝐹‘𝑟) − 𝑈) = ((𝐹‘𝐴) − 𝑈)) |
5 | | ivthreinc.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
6 | | ivthreinc.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
7 | | cncff 14732 |
. . . . . . . . 9
⊢ (𝐹 ∈ (ℝ–cn→ℝ) → 𝐹:ℝ⟶ℝ) |
8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
9 | 8, 5 | ffvelcdmd 5694 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
10 | | ivthreinc.3 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℝ) |
11 | 9, 10 | resubcld 8400 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) − 𝑈) ∈ ℝ) |
12 | 2, 4, 5, 11 | fvmptd3 5651 |
. . . . 5
⊢ (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) = ((𝐹‘𝐴) − 𝑈)) |
13 | | ivthreinc.9 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
14 | 13 | simpld 112 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
15 | 9, 10 | sublt0d 8589 |
. . . . . 6
⊢ (𝜑 → (((𝐹‘𝐴) − 𝑈) < 0 ↔ (𝐹‘𝐴) < 𝑈)) |
16 | 14, 15 | mpbird 167 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐴) − 𝑈) < 0) |
17 | 12, 16 | eqbrtrd 4051 |
. . . 4
⊢ (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0) |
18 | 13 | simprd 114 |
. . . . . 6
⊢ (𝜑 → 𝑈 < (𝐹‘𝐵)) |
19 | | ivthreinc.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
20 | 8, 19 | ffvelcdmd 5694 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
21 | 10, 20 | posdifd 8551 |
. . . . . 6
⊢ (𝜑 → (𝑈 < (𝐹‘𝐵) ↔ 0 < ((𝐹‘𝐵) − 𝑈))) |
22 | 18, 21 | mpbid 147 |
. . . . 5
⊢ (𝜑 → 0 < ((𝐹‘𝐵) − 𝑈)) |
23 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑟 = 𝐵 → (𝐹‘𝑟) = (𝐹‘𝐵)) |
24 | 23 | oveq1d 5933 |
. . . . . 6
⊢ (𝑟 = 𝐵 → ((𝐹‘𝑟) − 𝑈) = ((𝐹‘𝐵) − 𝑈)) |
25 | 20, 10 | resubcld 8400 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) − 𝑈) ∈ ℝ) |
26 | 2, 24, 19, 25 | fvmptd3 5651 |
. . . . 5
⊢ (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵) = ((𝐹‘𝐵) − 𝑈)) |
27 | 22, 26 | breqtrrd 4057 |
. . . 4
⊢ (𝜑 → 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵)) |
28 | 1, 17, 27 | 3jca 1179 |
. . 3
⊢ (𝜑 → (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵))) |
29 | | breq2 4033 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐴 < 𝑏 ↔ 𝐴 < 𝐵)) |
30 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵)) |
31 | 30 | breq2d 4041 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵))) |
32 | 29, 31 | 3anbi13d 1325 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵)))) |
33 | | breq2 4033 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑥 < 𝑏 ↔ 𝑥 < 𝐵)) |
34 | 33 | 3anbi2d 1328 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
35 | 34 | rexbidv 2495 |
. . . . 5
⊢ (𝑏 = 𝐵 → (∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
36 | 32, 35 | imbi12d 234 |
. . . 4
⊢ (𝑏 = 𝐵 → (((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
37 | | breq1 4032 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 < 𝑏 ↔ 𝐴 < 𝑏)) |
38 | | fveq2 5554 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴)) |
39 | 38 | breq1d 4039 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0)) |
40 | 37, 39 | 3anbi12d 1324 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)))) |
41 | | breq1 4032 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎 < 𝑥 ↔ 𝐴 < 𝑥)) |
42 | 41 | 3anbi1d 1327 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
43 | 42 | rexbidv 2495 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
44 | 40, 43 | imbi12d 234 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
45 | 44 | ralbidv 2494 |
. . . . 5
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
46 | 8 | ffvelcdmda 5693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (𝐹‘𝑟) ∈ ℝ) |
47 | 10 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → 𝑈 ∈ ℝ) |
48 | 46, 47 | resubcld 8400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → ((𝐹‘𝑟) − 𝑈) ∈ ℝ) |
49 | 48 | fmpttd 5713 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)):ℝ⟶ℝ) |
50 | | ax-resscn 7964 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
51 | 50 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℂ) |
52 | 8 | feqmptd 5610 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑟 ∈ ℝ ↦ (𝐹‘𝑟))) |
53 | | ssid 3199 |
. . . . . . . . . . . 12
⊢ ℂ
⊆ ℂ |
54 | | cncfss 14738 |
. . . . . . . . . . . 12
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)) |
55 | 50, 53, 54 | mp2an 426 |
. . . . . . . . . . 11
⊢
(ℝ–cn→ℝ)
⊆ (ℝ–cn→ℂ) |
56 | 55, 6 | sselid 3177 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℂ)) |
57 | 52, 56 | eqeltrrd 2271 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ ℝ ↦ (𝐹‘𝑟)) ∈ (ℝ–cn→ℂ)) |
58 | 10 | recnd 8048 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ ℂ) |
59 | 53 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ⊆
ℂ) |
60 | | cncfmptc 14750 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ ℂ ∧ ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ)) |
61 | 58, 51, 59, 60 | syl3anc 1249 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ)) |
62 | 57, 61 | subcncf 14767 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ)) |
63 | | cncfcdm 14737 |
. . . . . . . 8
⊢ ((ℝ
⊆ ℂ ∧ (𝑟
∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ)) → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)):ℝ⟶ℝ)) |
64 | 51, 62, 63 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)):ℝ⟶ℝ)) |
65 | 49, 64 | mpbird 167 |
. . . . . 6
⊢ (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ)) |
66 | | ivthreinc.i |
. . . . . . 7
⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
67 | | reex 8006 |
. . . . . . . . 9
⊢ ℝ
∈ V |
68 | 67 | mptex 5784 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ V |
69 | | eleq1 2256 |
. . . . . . . . 9
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (𝑓 ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ))) |
70 | | fveq1 5553 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (𝑓‘𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎)) |
71 | 70 | breq1d 4039 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → ((𝑓‘𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0)) |
72 | | fveq1 5553 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (𝑓‘𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) |
73 | 72 | breq2d 4041 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (0 < (𝑓‘𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏))) |
74 | 71, 73 | 3anbi23d 1326 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) ↔ (𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)))) |
75 | | fveq1 5553 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (𝑓‘𝑥) = ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥)) |
76 | 75 | eqeq1d 2202 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → ((𝑓‘𝑥) = 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)) |
77 | 76 | 3anbi3d 1329 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → ((𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
78 | 77 | rexbidv 2495 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
79 | 74, 78 | imbi12d 234 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
80 | 79 | ralbidv 2494 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
81 | 80 | ralbidv 2494 |
. . . . . . . . 9
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
82 | 69, 81 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) → ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))))) |
83 | 68, 82 | spcv 2854 |
. . . . . . 7
⊢
(∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
84 | 66, 83 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)))) |
85 | 65, 84 | mpd 13 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
86 | 45, 85, 5 | rspcdva 2869 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
87 | 36, 86, 19 | rspcdva 2869 |
. . 3
⊢ (𝜑 → ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) |
88 | 28, 87 | mpd 13 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0)) |
89 | 5 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈ ℝ) |
90 | 89 | rexrd 8069 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈
ℝ*) |
91 | 19 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈ ℝ) |
92 | 91 | rexrd 8069 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈
ℝ*) |
93 | | simprl 529 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ ℝ) |
94 | 90, 92, 93 | 3jca 1179 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ)) |
95 | | simprr1 1047 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 < 𝑥) |
96 | | simprr2 1048 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 < 𝐵) |
97 | 95, 96 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
98 | | elioo4g 10000 |
. . . 4
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈ ℝ)
∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
99 | 94, 97, 98 | sylanbrc 417 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ (𝐴(,)𝐵)) |
100 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝐹:ℝ⟶ℝ) |
101 | 100, 93 | ffvelcdmd 5694 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹‘𝑥) ∈ ℝ) |
102 | 101 | recnd 8048 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹‘𝑥) ∈ ℂ) |
103 | 58 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℂ) |
104 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑟 = 𝑥 → (𝐹‘𝑟) = (𝐹‘𝑥)) |
105 | 104 | oveq1d 5933 |
. . . . . 6
⊢ (𝑟 = 𝑥 → ((𝐹‘𝑟) − 𝑈) = ((𝐹‘𝑥) − 𝑈)) |
106 | 10 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℝ) |
107 | 101, 106 | resubcld 8400 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹‘𝑥) − 𝑈) ∈ ℝ) |
108 | 2, 105, 93, 107 | fvmptd3 5651 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = ((𝐹‘𝑥) − 𝑈)) |
109 | | simprr3 1049 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0) |
110 | 108, 109 | eqtr3d 2228 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹‘𝑥) − 𝑈) = 0) |
111 | 102, 103,
110 | subeq0d 8338 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹‘𝑥) = 𝑈) |
112 | | fveqeq2 5563 |
. . . 4
⊢ (𝑐 = 𝑥 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝑥) = 𝑈)) |
113 | 112 | rspcev 2864 |
. . 3
⊢ ((𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹‘𝑥) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
114 | 99, 111, 113 | syl2anc 411 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹‘𝑟) − 𝑈))‘𝑥) = 0))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
115 | 88, 114 | rexlimddv 2616 |
1
⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |