ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthreinc GIF version

Theorem ivthreinc 15284
Description: Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15282). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function 𝐹 is continuous on the entire real line, not just (𝐴[,]𝐵) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
Hypotheses
Ref Expression
ivthreinc.1 (𝜑𝐴 ∈ ℝ)
ivthreinc.2 (𝜑𝐵 ∈ ℝ)
ivthreinc.3 (𝜑𝑈 ∈ ℝ)
ivthreinc.4 (𝜑𝐴 < 𝐵)
ivthreinc.7 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
ivthreinc.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthreinc.i (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
Assertion
Ref Expression
ivthreinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐴,𝑐,𝑥   𝐵,𝑏,𝑥   𝐵,𝑐   𝐹,𝑎,𝑏,𝑓,𝑥   𝐹,𝑐   𝑈,𝑎,𝑏,𝑓,𝑥   𝑈,𝑐   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏,𝑐)   𝐴(𝑓)   𝐵(𝑓,𝑎)

Proof of Theorem ivthreinc
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ivthreinc.4 . . . 4 (𝜑𝐴 < 𝐵)
2 eqid 2209 . . . . . 6 (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))
3 fveq2 5603 . . . . . . 7 (𝑟 = 𝐴 → (𝐹𝑟) = (𝐹𝐴))
43oveq1d 5989 . . . . . 6 (𝑟 = 𝐴 → ((𝐹𝑟) − 𝑈) = ((𝐹𝐴) − 𝑈))
5 ivthreinc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 ivthreinc.7 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
7 cncff 15216 . . . . . . . . 9 (𝐹 ∈ (ℝ–cn→ℝ) → 𝐹:ℝ⟶ℝ)
86, 7syl 14 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98, 5ffvelcdmd 5744 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
10 ivthreinc.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
119, 10resubcld 8495 . . . . . 6 (𝜑 → ((𝐹𝐴) − 𝑈) ∈ ℝ)
122, 4, 5, 11fvmptd3 5701 . . . . 5 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) = ((𝐹𝐴) − 𝑈))
13 ivthreinc.9 . . . . . . 7 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1413simpld 112 . . . . . 6 (𝜑 → (𝐹𝐴) < 𝑈)
159, 10sublt0d 8685 . . . . . 6 (𝜑 → (((𝐹𝐴) − 𝑈) < 0 ↔ (𝐹𝐴) < 𝑈))
1614, 15mpbird 167 . . . . 5 (𝜑 → ((𝐹𝐴) − 𝑈) < 0)
1712, 16eqbrtrd 4084 . . . 4 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0)
1813simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐵))
19 ivthreinc.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
208, 19ffvelcdmd 5744 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
2110, 20posdifd 8647 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐵) ↔ 0 < ((𝐹𝐵) − 𝑈)))
2218, 21mpbid 147 . . . . 5 (𝜑 → 0 < ((𝐹𝐵) − 𝑈))
23 fveq2 5603 . . . . . . 7 (𝑟 = 𝐵 → (𝐹𝑟) = (𝐹𝐵))
2423oveq1d 5989 . . . . . 6 (𝑟 = 𝐵 → ((𝐹𝑟) − 𝑈) = ((𝐹𝐵) − 𝑈))
2520, 10resubcld 8495 . . . . . 6 (𝜑 → ((𝐹𝐵) − 𝑈) ∈ ℝ)
262, 24, 19, 25fvmptd3 5701 . . . . 5 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵) = ((𝐹𝐵) − 𝑈))
2722, 26breqtrrd 4090 . . . 4 (𝜑 → 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))
281, 17, 273jca 1182 . . 3 (𝜑 → (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)))
29 breq2 4066 . . . . . 6 (𝑏 = 𝐵 → (𝐴 < 𝑏𝐴 < 𝐵))
30 fveq2 5603 . . . . . . 7 (𝑏 = 𝐵 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))
3130breq2d 4074 . . . . . 6 (𝑏 = 𝐵 → (0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)))
3229, 313anbi13d 1329 . . . . 5 (𝑏 = 𝐵 → ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))))
33 breq2 4066 . . . . . . 7 (𝑏 = 𝐵 → (𝑥 < 𝑏𝑥 < 𝐵))
34333anbi2d 1332 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
3534rexbidv 2511 . . . . 5 (𝑏 = 𝐵 → (∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
3632, 35imbi12d 234 . . . 4 (𝑏 = 𝐵 → (((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
37 breq1 4065 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 < 𝑏𝐴 < 𝑏))
38 fveq2 5603 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴))
3938breq1d 4072 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0))
4037, 393anbi12d 1328 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))))
41 breq1 4065 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎 < 𝑥𝐴 < 𝑥))
42413anbi1d 1331 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
4342rexbidv 2511 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
4440, 43imbi12d 234 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
4544ralbidv 2510 . . . . 5 (𝑎 = 𝐴 → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
468ffvelcdmda 5743 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → (𝐹𝑟) ∈ ℝ)
4710adantr 276 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑈 ∈ ℝ)
4846, 47resubcld 8495 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ) → ((𝐹𝑟) − 𝑈) ∈ ℝ)
4948fmpttd 5763 . . . . . . 7 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ)
50 ax-resscn 8059 . . . . . . . . 9 ℝ ⊆ ℂ
5150a1i 9 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
528feqmptd 5660 . . . . . . . . . 10 (𝜑𝐹 = (𝑟 ∈ ℝ ↦ (𝐹𝑟)))
53 ssid 3224 . . . . . . . . . . . 12 ℂ ⊆ ℂ
54 cncfss 15222 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5550, 53, 54mp2an 426 . . . . . . . . . . 11 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
5655, 6sselid 3202 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℝ–cn→ℂ))
5752, 56eqeltrrd 2287 . . . . . . . . 9 (𝜑 → (𝑟 ∈ ℝ ↦ (𝐹𝑟)) ∈ (ℝ–cn→ℂ))
5810recnd 8143 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
5953a1i 9 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
60 cncfmptc 15235 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ))
6158, 51, 59, 60syl3anc 1252 . . . . . . . . 9 (𝜑 → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ))
6257, 61subcncf 15252 . . . . . . . 8 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ))
63 cncfcdm 15221 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ)) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ))
6451, 62, 63syl2anc 411 . . . . . . 7 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ))
6549, 64mpbird 167 . . . . . 6 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ))
66 ivthreinc.i . . . . . . 7 (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
67 reex 8101 . . . . . . . . 9 ℝ ∈ V
6867mptex 5838 . . . . . . . 8 (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ V
69 eleq1 2272 . . . . . . . . 9 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓 ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ)))
70 fveq1 5602 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎))
7170breq1d 4072 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0))
72 fveq1 5602 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))
7372breq2d 4074 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (0 < (𝑓𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)))
7471, 733anbi23d 1330 . . . . . . . . . . . 12 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) ↔ (𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))))
75 fveq1 5602 . . . . . . . . . . . . . . 15 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑥) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥))
7675eqeq1d 2218 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓𝑥) = 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))
77763anbi3d 1333 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0) ↔ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
7877rexbidv 2511 . . . . . . . . . . . 12 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
7974, 78imbi12d 234 . . . . . . . . . . 11 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8079ralbidv 2510 . . . . . . . . . 10 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8180ralbidv 2510 . . . . . . . . 9 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8269, 81imbi12d 234 . . . . . . . 8 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))) ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))))
8368, 82spcv 2877 . . . . . . 7 (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8466, 83syl 14 . . . . . 6 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8565, 84mpd 13 . . . . 5 (𝜑 → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8645, 85, 5rspcdva 2892 . . . 4 (𝜑 → ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8736, 86, 19rspcdva 2892 . . 3 (𝜑 → ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8828, 87mpd 13 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))
895adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈ ℝ)
9089rexrd 8164 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈ ℝ*)
9119adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈ ℝ)
9291rexrd 8164 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈ ℝ*)
93 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ ℝ)
9490, 92, 933jca 1182 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
95 simprr1 1050 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 < 𝑥)
96 simprr2 1051 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 < 𝐵)
9795, 96jca 306 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 < 𝑥𝑥 < 𝐵))
98 elioo4g 10098 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
9994, 97, 98sylanbrc 417 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ (𝐴(,)𝐵))
1008adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐹:ℝ⟶ℝ)
101100, 93ffvelcdmd 5744 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) ∈ ℝ)
102101recnd 8143 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) ∈ ℂ)
10358adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℂ)
104 fveq2 5603 . . . . . . 7 (𝑟 = 𝑥 → (𝐹𝑟) = (𝐹𝑥))
105104oveq1d 5989 . . . . . 6 (𝑟 = 𝑥 → ((𝐹𝑟) − 𝑈) = ((𝐹𝑥) − 𝑈))
10610adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℝ)
107101, 106resubcld 8495 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹𝑥) − 𝑈) ∈ ℝ)
1082, 105, 93, 107fvmptd3 5701 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = ((𝐹𝑥) − 𝑈))
109 simprr3 1052 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)
110108, 109eqtr3d 2244 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹𝑥) − 𝑈) = 0)
111102, 103, 110subeq0d 8433 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) = 𝑈)
112 fveqeq2 5612 . . . 4 (𝑐 = 𝑥 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝑥) = 𝑈))
113112rspcev 2887 . . 3 ((𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
11499, 111, 113syl2anc 411 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
11588, 114rexlimddv 2633 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983  wal 1373   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wss 3177   class class class wbr 4062  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  *cxr 8148   < clt 8149  cmin 8285  (,)cioo 10052  cnccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210
This theorem is referenced by:  ivthdichlem  15290
  Copyright terms: Public domain W3C validator