ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthreinc GIF version

Theorem ivthreinc 15327
Description: Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15325). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function 𝐹 is continuous on the entire real line, not just (𝐴[,]𝐵) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
Hypotheses
Ref Expression
ivthreinc.1 (𝜑𝐴 ∈ ℝ)
ivthreinc.2 (𝜑𝐵 ∈ ℝ)
ivthreinc.3 (𝜑𝑈 ∈ ℝ)
ivthreinc.4 (𝜑𝐴 < 𝐵)
ivthreinc.7 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
ivthreinc.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthreinc.i (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
Assertion
Ref Expression
ivthreinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐴,𝑐,𝑥   𝐵,𝑏,𝑥   𝐵,𝑐   𝐹,𝑎,𝑏,𝑓,𝑥   𝐹,𝑐   𝑈,𝑎,𝑏,𝑓,𝑥   𝑈,𝑐   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏,𝑐)   𝐴(𝑓)   𝐵(𝑓,𝑎)

Proof of Theorem ivthreinc
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ivthreinc.4 . . . 4 (𝜑𝐴 < 𝐵)
2 eqid 2229 . . . . . 6 (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))
3 fveq2 5629 . . . . . . 7 (𝑟 = 𝐴 → (𝐹𝑟) = (𝐹𝐴))
43oveq1d 6022 . . . . . 6 (𝑟 = 𝐴 → ((𝐹𝑟) − 𝑈) = ((𝐹𝐴) − 𝑈))
5 ivthreinc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 ivthreinc.7 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
7 cncff 15259 . . . . . . . . 9 (𝐹 ∈ (ℝ–cn→ℝ) → 𝐹:ℝ⟶ℝ)
86, 7syl 14 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98, 5ffvelcdmd 5773 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
10 ivthreinc.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
119, 10resubcld 8535 . . . . . 6 (𝜑 → ((𝐹𝐴) − 𝑈) ∈ ℝ)
122, 4, 5, 11fvmptd3 5730 . . . . 5 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) = ((𝐹𝐴) − 𝑈))
13 ivthreinc.9 . . . . . . 7 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1413simpld 112 . . . . . 6 (𝜑 → (𝐹𝐴) < 𝑈)
159, 10sublt0d 8725 . . . . . 6 (𝜑 → (((𝐹𝐴) − 𝑈) < 0 ↔ (𝐹𝐴) < 𝑈))
1614, 15mpbird 167 . . . . 5 (𝜑 → ((𝐹𝐴) − 𝑈) < 0)
1712, 16eqbrtrd 4105 . . . 4 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0)
1813simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐵))
19 ivthreinc.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
208, 19ffvelcdmd 5773 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
2110, 20posdifd 8687 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐵) ↔ 0 < ((𝐹𝐵) − 𝑈)))
2218, 21mpbid 147 . . . . 5 (𝜑 → 0 < ((𝐹𝐵) − 𝑈))
23 fveq2 5629 . . . . . . 7 (𝑟 = 𝐵 → (𝐹𝑟) = (𝐹𝐵))
2423oveq1d 6022 . . . . . 6 (𝑟 = 𝐵 → ((𝐹𝑟) − 𝑈) = ((𝐹𝐵) − 𝑈))
2520, 10resubcld 8535 . . . . . 6 (𝜑 → ((𝐹𝐵) − 𝑈) ∈ ℝ)
262, 24, 19, 25fvmptd3 5730 . . . . 5 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵) = ((𝐹𝐵) − 𝑈))
2722, 26breqtrrd 4111 . . . 4 (𝜑 → 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))
281, 17, 273jca 1201 . . 3 (𝜑 → (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)))
29 breq2 4087 . . . . . 6 (𝑏 = 𝐵 → (𝐴 < 𝑏𝐴 < 𝐵))
30 fveq2 5629 . . . . . . 7 (𝑏 = 𝐵 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))
3130breq2d 4095 . . . . . 6 (𝑏 = 𝐵 → (0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)))
3229, 313anbi13d 1348 . . . . 5 (𝑏 = 𝐵 → ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵))))
33 breq2 4087 . . . . . . 7 (𝑏 = 𝐵 → (𝑥 < 𝑏𝑥 < 𝐵))
34333anbi2d 1351 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
3534rexbidv 2531 . . . . 5 (𝑏 = 𝐵 → (∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
3632, 35imbi12d 234 . . . 4 (𝑏 = 𝐵 → (((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
37 breq1 4086 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 < 𝑏𝐴 < 𝑏))
38 fveq2 5629 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴))
3938breq1d 4093 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0))
4037, 393anbi12d 1347 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) ↔ (𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))))
41 breq1 4086 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎 < 𝑥𝐴 < 𝑥))
42413anbi1d 1350 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
4342rexbidv 2531 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
4440, 43imbi12d 234 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
4544ralbidv 2530 . . . . 5 (𝑎 = 𝐴 → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
468ffvelcdmda 5772 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → (𝐹𝑟) ∈ ℝ)
4710adantr 276 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑈 ∈ ℝ)
4846, 47resubcld 8535 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ) → ((𝐹𝑟) − 𝑈) ∈ ℝ)
4948fmpttd 5792 . . . . . . 7 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ)
50 ax-resscn 8099 . . . . . . . . 9 ℝ ⊆ ℂ
5150a1i 9 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
528feqmptd 5689 . . . . . . . . . 10 (𝜑𝐹 = (𝑟 ∈ ℝ ↦ (𝐹𝑟)))
53 ssid 3244 . . . . . . . . . . . 12 ℂ ⊆ ℂ
54 cncfss 15265 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5550, 53, 54mp2an 426 . . . . . . . . . . 11 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
5655, 6sselid 3222 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℝ–cn→ℂ))
5752, 56eqeltrrd 2307 . . . . . . . . 9 (𝜑 → (𝑟 ∈ ℝ ↦ (𝐹𝑟)) ∈ (ℝ–cn→ℂ))
5810recnd 8183 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
5953a1i 9 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
60 cncfmptc 15278 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ))
6158, 51, 59, 60syl3anc 1271 . . . . . . . . 9 (𝜑 → (𝑟 ∈ ℝ ↦ 𝑈) ∈ (ℝ–cn→ℂ))
6257, 61subcncf 15295 . . . . . . . 8 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ))
63 cncfcdm 15264 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℂ)) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ))
6451, 62, 63syl2anc 411 . . . . . . 7 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)):ℝ⟶ℝ))
6549, 64mpbird 167 . . . . . 6 (𝜑 → (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ))
66 ivthreinc.i . . . . . . 7 (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
67 reex 8141 . . . . . . . . 9 ℝ ∈ V
6867mptex 5869 . . . . . . . 8 (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ V
69 eleq1 2292 . . . . . . . . 9 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓 ∈ (ℝ–cn→ℝ) ↔ (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ)))
70 fveq1 5628 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑎) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎))
7170breq1d 4093 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓𝑎) < 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0))
72 fveq1 5628 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑏) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))
7372breq2d 4095 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (0 < (𝑓𝑏) ↔ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)))
7471, 733anbi23d 1349 . . . . . . . . . . . 12 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) ↔ (𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏))))
75 fveq1 5628 . . . . . . . . . . . . . . 15 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (𝑓𝑥) = ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥))
7675eqeq1d 2238 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓𝑥) = 0 ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))
77763anbi3d 1352 . . . . . . . . . . . . 13 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0) ↔ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
7877rexbidv 2531 . . . . . . . . . . . 12 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0) ↔ ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
7974, 78imbi12d 234 . . . . . . . . . . 11 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8079ralbidv 2530 . . . . . . . . . 10 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8180ralbidv 2530 . . . . . . . . 9 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8269, 81imbi12d 234 . . . . . . . 8 (𝑓 = (𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) → ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))) ↔ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))))
8368, 82spcv 2897 . . . . . . 7 (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8466, 83syl 14 . . . . . 6 (𝜑 → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈)) ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))))
8565, 84mpd 13 . . . . 5 (𝜑 → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑎) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8645, 85, 5rspcdva 2912 . . . 4 (𝜑 → ∀𝑏 ∈ ℝ ((𝐴 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑏)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝑏 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8736, 86, 19rspcdva 2912 . . 3 (𝜑 → ((𝐴 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐴) < 0 ∧ 0 < ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝐵)) → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)))
8828, 87mpd 13 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))
895adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈ ℝ)
9089rexrd 8204 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 ∈ ℝ*)
9119adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈ ℝ)
9291rexrd 8204 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐵 ∈ ℝ*)
93 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ ℝ)
9490, 92, 933jca 1201 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
95 simprr1 1069 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐴 < 𝑥)
96 simprr2 1070 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 < 𝐵)
9795, 96jca 306 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐴 < 𝑥𝑥 < 𝐵))
98 elioo4g 10138 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
9994, 97, 98sylanbrc 417 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑥 ∈ (𝐴(,)𝐵))
1008adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝐹:ℝ⟶ℝ)
101100, 93ffvelcdmd 5773 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) ∈ ℝ)
102101recnd 8183 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) ∈ ℂ)
10358adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℂ)
104 fveq2 5629 . . . . . . 7 (𝑟 = 𝑥 → (𝐹𝑟) = (𝐹𝑥))
105104oveq1d 6022 . . . . . 6 (𝑟 = 𝑥 → ((𝐹𝑟) − 𝑈) = ((𝐹𝑥) − 𝑈))
10610adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → 𝑈 ∈ ℝ)
107101, 106resubcld 8535 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹𝑥) − 𝑈) ∈ ℝ)
1082, 105, 93, 107fvmptd3 5730 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = ((𝐹𝑥) − 𝑈))
109 simprr3 1071 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0)
110108, 109eqtr3d 2264 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ((𝐹𝑥) − 𝑈) = 0)
111102, 103, 110subeq0d 8473 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → (𝐹𝑥) = 𝑈)
112 fveqeq2 5638 . . . 4 (𝑐 = 𝑥 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝑥) = 𝑈))
113112rspcev 2907 . . 3 ((𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
11499, 111, 113syl2anc 411 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥𝑥 < 𝐵 ∧ ((𝑟 ∈ ℝ ↦ ((𝐹𝑟) − 𝑈))‘𝑥) = 0))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
11588, 114rexlimddv 2653 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wal 1393   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4083  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  *cxr 8188   < clt 8189  cmin 8325  (,)cioo 10092  cnccncf 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253
This theorem is referenced by:  ivthdichlem  15333
  Copyright terms: Public domain W3C validator