Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  spimd GIF version

Theorem spimd 15871
Description: Deduction form of spim 1762. (Contributed by BJ, 17-Oct-2019.)
Hypotheses
Ref Expression
spimd.nf (𝜑 → Ⅎ𝑥𝜒)
spimd.1 (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
spimd (𝜑 → (∀𝑥𝜓𝜒))

Proof of Theorem spimd
StepHypRef Expression
1 spimd.nf . 2 (𝜑 → Ⅎ𝑥𝜒)
2 spimd.1 . 2 (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓𝜒)))
3 spimt 1760 . 2 ((Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜓𝜒))) → (∀𝑥𝜓𝜒))
41, 2, 3syl2anc 411 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  2spim  15872
  Copyright terms: Public domain W3C validator