ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsd GIF version

Theorem spsd 1526
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
spsd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
spsd (𝜑 → (∀𝑥𝜓𝜒))

Proof of Theorem spsd
StepHypRef Expression
1 sp 1499 . 2 (∀𝑥𝜓𝜓)
2 spsd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1498
This theorem is referenced by:  moexexdc  2098  euexex  2099
  Copyright terms: Public domain W3C validator