![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1469 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1310 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-4 1468 |
This theorem is referenced by: 19.21ht 1541 exim 1559 alexdc 1579 19.2 1598 ax10o 1674 hbae 1677 cbv1h 1704 equvini 1712 equveli 1713 ax10oe 1749 drex1 1750 drsb1 1751 exdistrfor 1752 ax11v2 1772 equs5or 1782 sbequi 1791 drsb2 1793 spsbim 1795 sbcomxyyz 1919 hbsb4t 1962 mopick 2051 eupickbi 2055 ceqsalg 2683 mo2icl 2830 reu6 2840 sbcal 2926 csbie2t 3012 dfss4st 3273 reldisj 3378 dfnfc2 3718 ssopab2 4155 eusvnfb 4333 mosubopt 4562 issref 4877 fv3 5396 fvmptt 5464 fnoprabg 5824 bj-exlimmp 12660 strcollnft 12865 |
Copyright terms: Public domain | W3C validator |