Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1499 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1498 |
This theorem is referenced by: 19.21ht 1569 exim 1587 alexdc 1607 19.2 1626 ax10o 1703 hbae 1706 cbv1h 1734 equvini 1746 equveli 1747 ax10oe 1785 drex1 1786 drsb1 1787 exdistrfor 1788 ax11v2 1808 equs5or 1818 sbequi 1827 drsb2 1829 spsbim 1831 sbcomxyyz 1960 hbsb4t 2001 mopick 2092 eupickbi 2096 ceqsalg 2754 mo2icl 2905 reu6 2915 sbcal 3002 csbie2t 3093 dfss4st 3355 reldisj 3460 dfnfc2 3807 ssopab2 4253 eusvnfb 4432 mosubopt 4669 issref 4986 fv3 5509 fvmptt 5577 fnoprabg 5943 bj-exlimmp 13660 strcollnft 13876 |
Copyright terms: Public domain | W3C validator |