![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1511 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1510 |
This theorem is referenced by: 19.21ht 1581 exim 1599 alexdc 1619 19.2 1638 ax10o 1715 hbae 1718 cbv1h 1746 equvini 1758 equveli 1759 ax10oe 1797 drex1 1798 drsb1 1799 exdistrfor 1800 ax11v2 1820 equs5or 1830 sbequi 1839 drsb2 1841 spsbim 1843 sbcomxyyz 1972 hbsb4t 2013 mopick 2104 eupickbi 2108 ceqsalg 2766 mo2icl 2917 reu6 2927 sbcal 3015 csbie2t 3106 dfss4st 3369 reldisj 3475 dfnfc2 3828 ssopab2 4276 eusvnfb 4455 mosubopt 4692 issref 5012 fv3 5539 fvmptt 5608 fnoprabg 5976 bj-exlimmp 14524 strcollnft 14739 |
Copyright terms: Public domain | W3C validator |