| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sps | GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 1537 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1536 |
| This theorem is referenced by: 19.21ht 1607 exim 1625 alexdc 1645 19.2 1664 ax10o 1741 hbae 1744 cbv1h 1772 equvini 1784 equveli 1785 ax10oe 1823 drex1 1824 drsb1 1825 exdistrfor 1826 ax11v2 1846 equs5or 1856 sbequi 1865 drsb2 1867 spsbim 1869 sbcomxyyz 2003 hbsb4t 2044 mopick 2136 eupickbi 2140 ceqsalg 2808 mo2icl 2962 reu6 2972 sbcal 3060 csbie2t 3153 dfss4st 3417 reldisj 3523 dfnfc2 3885 ssopab2 4343 eusvnfb 4522 mosubopt 4761 issref 5087 fv3 5626 fvmptt 5699 fnoprabg 6076 bj-exlimmp 16043 strcollnft 16257 |
| Copyright terms: Public domain | W3C validator |