ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sps GIF version

Theorem sps 1535
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sps.1 (𝜑𝜓)
Assertion
Ref Expression
sps (∀𝑥𝜑𝜓)

Proof of Theorem sps
StepHypRef Expression
1 sp 1509 . 2 (∀𝑥𝜑𝜑)
2 sps.1 . 2 (𝜑𝜓)
31, 2syl 14 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1508
This theorem is referenced by:  19.21ht  1579  exim  1597  alexdc  1617  19.2  1636  ax10o  1713  hbae  1716  cbv1h  1744  equvini  1756  equveli  1757  ax10oe  1795  drex1  1796  drsb1  1797  exdistrfor  1798  ax11v2  1818  equs5or  1828  sbequi  1837  drsb2  1839  spsbim  1841  sbcomxyyz  1970  hbsb4t  2011  mopick  2102  eupickbi  2106  ceqsalg  2763  mo2icl  2914  reu6  2924  sbcal  3012  csbie2t  3103  dfss4st  3366  reldisj  3472  dfnfc2  3823  ssopab2  4269  eusvnfb  4448  mosubopt  4685  issref  5003  fv3  5530  fvmptt  5599  fnoprabg  5966  bj-exlimmp  14061  strcollnft  14276
  Copyright terms: Public domain W3C validator