Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1504 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1503 |
This theorem is referenced by: 19.21ht 1574 exim 1592 alexdc 1612 19.2 1631 ax10o 1708 hbae 1711 cbv1h 1739 equvini 1751 equveli 1752 ax10oe 1790 drex1 1791 drsb1 1792 exdistrfor 1793 ax11v2 1813 equs5or 1823 sbequi 1832 drsb2 1834 spsbim 1836 sbcomxyyz 1965 hbsb4t 2006 mopick 2097 eupickbi 2101 ceqsalg 2758 mo2icl 2909 reu6 2919 sbcal 3006 csbie2t 3097 dfss4st 3360 reldisj 3466 dfnfc2 3814 ssopab2 4260 eusvnfb 4439 mosubopt 4676 issref 4993 fv3 5519 fvmptt 5587 fnoprabg 5954 bj-exlimmp 13804 strcollnft 14019 |
Copyright terms: Public domain | W3C validator |