![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1522 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1521 |
This theorem is referenced by: 19.21ht 1592 exim 1610 alexdc 1630 19.2 1649 ax10o 1726 hbae 1729 cbv1h 1757 equvini 1769 equveli 1770 ax10oe 1808 drex1 1809 drsb1 1810 exdistrfor 1811 ax11v2 1831 equs5or 1841 sbequi 1850 drsb2 1852 spsbim 1854 sbcomxyyz 1988 hbsb4t 2029 mopick 2120 eupickbi 2124 ceqsalg 2788 mo2icl 2940 reu6 2950 sbcal 3038 csbie2t 3130 dfss4st 3393 reldisj 3499 dfnfc2 3854 ssopab2 4307 eusvnfb 4486 mosubopt 4725 issref 5049 fv3 5578 fvmptt 5650 fnoprabg 6020 bj-exlimmp 15331 strcollnft 15546 |
Copyright terms: Public domain | W3C validator |