| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sps | GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sp 1525 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1524 | 
| This theorem is referenced by: 19.21ht 1595 exim 1613 alexdc 1633 19.2 1652 ax10o 1729 hbae 1732 cbv1h 1760 equvini 1772 equveli 1773 ax10oe 1811 drex1 1812 drsb1 1813 exdistrfor 1814 ax11v2 1834 equs5or 1844 sbequi 1853 drsb2 1855 spsbim 1857 sbcomxyyz 1991 hbsb4t 2032 mopick 2123 eupickbi 2127 ceqsalg 2791 mo2icl 2943 reu6 2953 sbcal 3041 csbie2t 3133 dfss4st 3396 reldisj 3502 dfnfc2 3857 ssopab2 4310 eusvnfb 4489 mosubopt 4728 issref 5052 fv3 5581 fvmptt 5653 fnoprabg 6023 bj-exlimmp 15415 strcollnft 15630 | 
| Copyright terms: Public domain | W3C validator |