ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sps GIF version

Theorem sps 1583
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sps.1 (𝜑𝜓)
Assertion
Ref Expression
sps (∀𝑥𝜑𝜓)

Proof of Theorem sps
StepHypRef Expression
1 sp 1557 . 2 (∀𝑥𝜑𝜑)
2 sps.1 . 2 (𝜑𝜓)
31, 2syl 14 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1556
This theorem is referenced by:  19.21ht  1627  exim  1645  alexdc  1665  19.2  1684  ax10o  1761  hbae  1764  cbv1h  1792  equvini  1804  equveli  1805  ax10oe  1843  drex1  1844  drsb1  1845  exdistrfor  1846  ax11v2  1866  equs5or  1876  sbequi  1885  drsb2  1887  spsbim  1889  sbcomxyyz  2023  hbsb4t  2064  mopick  2156  eupickbi  2160  ceqsalg  2828  mo2icl  2982  reu6  2992  sbcal  3080  csbie2t  3173  dfss4st  3437  reldisj  3543  dfnfc2  3906  ssopab2  4364  eusvnfb  4545  mosubopt  4784  issref  5111  fv3  5652  fvmptt  5728  fnoprabg  6111  bj-exlimmp  16157  strcollnft  16371
  Copyright terms: Public domain W3C validator