| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sps | GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 1535 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1534 |
| This theorem is referenced by: 19.21ht 1605 exim 1623 alexdc 1643 19.2 1662 ax10o 1739 hbae 1742 cbv1h 1770 equvini 1782 equveli 1783 ax10oe 1821 drex1 1822 drsb1 1823 exdistrfor 1824 ax11v2 1844 equs5or 1854 sbequi 1863 drsb2 1865 spsbim 1867 sbcomxyyz 2001 hbsb4t 2042 mopick 2133 eupickbi 2137 ceqsalg 2801 mo2icl 2953 reu6 2963 sbcal 3051 csbie2t 3143 dfss4st 3407 reldisj 3513 dfnfc2 3870 ssopab2 4326 eusvnfb 4505 mosubopt 4744 issref 5070 fv3 5606 fvmptt 5678 fnoprabg 6053 bj-exlimmp 15779 strcollnft 15994 |
| Copyright terms: Public domain | W3C validator |