Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1509 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1508 |
This theorem is referenced by: 19.21ht 1579 exim 1597 alexdc 1617 19.2 1636 ax10o 1713 hbae 1716 cbv1h 1744 equvini 1756 equveli 1757 ax10oe 1795 drex1 1796 drsb1 1797 exdistrfor 1798 ax11v2 1818 equs5or 1828 sbequi 1837 drsb2 1839 spsbim 1841 sbcomxyyz 1970 hbsb4t 2011 mopick 2102 eupickbi 2106 ceqsalg 2763 mo2icl 2914 reu6 2924 sbcal 3012 csbie2t 3103 dfss4st 3366 reldisj 3472 dfnfc2 3823 ssopab2 4269 eusvnfb 4448 mosubopt 4685 issref 5003 fv3 5530 fvmptt 5599 fnoprabg 5966 bj-exlimmp 14061 strcollnft 14276 |
Copyright terms: Public domain | W3C validator |