ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sps GIF version

Theorem sps 1551
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sps.1 (𝜑𝜓)
Assertion
Ref Expression
sps (∀𝑥𝜑𝜓)

Proof of Theorem sps
StepHypRef Expression
1 sp 1525 . 2 (∀𝑥𝜑𝜑)
2 sps.1 . 2 (𝜑𝜓)
31, 2syl 14 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1524
This theorem is referenced by:  19.21ht  1595  exim  1613  alexdc  1633  19.2  1652  ax10o  1729  hbae  1732  cbv1h  1760  equvini  1772  equveli  1773  ax10oe  1811  drex1  1812  drsb1  1813  exdistrfor  1814  ax11v2  1834  equs5or  1844  sbequi  1853  drsb2  1855  spsbim  1857  sbcomxyyz  1991  hbsb4t  2032  mopick  2123  eupickbi  2127  ceqsalg  2791  mo2icl  2943  reu6  2953  sbcal  3041  csbie2t  3133  dfss4st  3396  reldisj  3502  dfnfc2  3857  ssopab2  4310  eusvnfb  4489  mosubopt  4728  issref  5052  fv3  5581  fvmptt  5653  fnoprabg  6023  bj-exlimmp  15415  strcollnft  15630
  Copyright terms: Public domain W3C validator