ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sps GIF version

Theorem sps 1530
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sps.1 (𝜑𝜓)
Assertion
Ref Expression
sps (∀𝑥𝜑𝜓)

Proof of Theorem sps
StepHypRef Expression
1 sp 1504 . 2 (∀𝑥𝜑𝜑)
2 sps.1 . 2 (𝜑𝜓)
31, 2syl 14 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1503
This theorem is referenced by:  19.21ht  1574  exim  1592  alexdc  1612  19.2  1631  ax10o  1708  hbae  1711  cbv1h  1739  equvini  1751  equveli  1752  ax10oe  1790  drex1  1791  drsb1  1792  exdistrfor  1793  ax11v2  1813  equs5or  1823  sbequi  1832  drsb2  1834  spsbim  1836  sbcomxyyz  1965  hbsb4t  2006  mopick  2097  eupickbi  2101  ceqsalg  2758  mo2icl  2909  reu6  2919  sbcal  3006  csbie2t  3097  dfss4st  3360  reldisj  3466  dfnfc2  3814  ssopab2  4260  eusvnfb  4439  mosubopt  4676  issref  4993  fv3  5519  fvmptt  5587  fnoprabg  5954  bj-exlimmp  13804  strcollnft  14019
  Copyright terms: Public domain W3C validator