Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbidf | GIF version |
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
nfbidf.1 | ⊢ Ⅎ𝑥𝜑 |
nfbidf.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
nfbidf | ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbidf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1507 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nfbidf.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1468 | . . . 4 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
5 | 3, 4 | imbi12d 233 | . . 3 ⊢ (𝜑 → ((𝜓 → ∀𝑥𝜓) ↔ (𝜒 → ∀𝑥𝜒))) |
6 | 2, 5 | albidh 1468 | . 2 ⊢ (𝜑 → (∀𝑥(𝜓 → ∀𝑥𝜓) ↔ ∀𝑥(𝜒 → ∀𝑥𝜒))) |
7 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
8 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑥𝜒 ↔ ∀𝑥(𝜒 → ∀𝑥𝜒)) | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: dvelimdf 2004 nfcjust 2296 nfceqdf 2307 nfabdw 2327 |
Copyright terms: Public domain | W3C validator |