| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfbidf | GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfbidf.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfbidf.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| nfbidf | ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfbidf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 3 | nfbidf.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1494 | . . . 4 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | 
| 5 | 3, 4 | imbi12d 234 | . . 3 ⊢ (𝜑 → ((𝜓 → ∀𝑥𝜓) ↔ (𝜒 → ∀𝑥𝜒))) | 
| 6 | 2, 5 | albidh 1494 | . 2 ⊢ (𝜑 → (∀𝑥(𝜓 → ∀𝑥𝜓) ↔ ∀𝑥(𝜒 → ∀𝑥𝜒))) | 
| 7 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 8 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜒 ↔ ∀𝑥(𝜒 → ∀𝑥𝜒)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: dvelimdf 2035 nfcjust 2327 nfceqdf 2338 nfabdw 2358 | 
| Copyright terms: Public domain | W3C validator |