ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbidf GIF version

Theorem nfbidf 1539
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1 𝑥𝜑
nfbidf.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
nfbidf (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . . 4 𝑥𝜑
21nfri 1519 . . 3 (𝜑 → ∀𝑥𝜑)
3 nfbidf.2 . . . 4 (𝜑 → (𝜓𝜒))
42, 3albidh 1480 . . . 4 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
53, 4imbi12d 234 . . 3 (𝜑 → ((𝜓 → ∀𝑥𝜓) ↔ (𝜒 → ∀𝑥𝜒)))
62, 5albidh 1480 . 2 (𝜑 → (∀𝑥(𝜓 → ∀𝑥𝜓) ↔ ∀𝑥(𝜒 → ∀𝑥𝜒)))
7 df-nf 1461 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
8 df-nf 1461 . 2 (Ⅎ𝑥𝜒 ↔ ∀𝑥(𝜒 → ∀𝑥𝜒))
96, 7, 83bitr4g 223 1 (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  dvelimdf  2016  nfcjust  2307  nfceqdf  2318  nfabdw  2338
  Copyright terms: Public domain W3C validator