ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdpc5 GIF version

Theorem stdpc5 1572
Description: An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 1690. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypothesis
Ref Expression
stdpc5.1 𝑥𝜑
Assertion
Ref Expression
stdpc5 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))

Proof of Theorem stdpc5
StepHypRef Expression
1 stdpc5.1 . . 3 𝑥𝜑
2119.21 1571 . 2 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
32biimpi 119 1 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  sbalyz  1987  ra5  3039
  Copyright terms: Public domain W3C validator