| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfimd | GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfimd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | nfnf1 1558 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1533 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → ∀𝑥Ⅎ𝑥𝜓) |
| 5 | nfnf1 1558 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝜒 | |
| 6 | 5 | nfri 1533 | . . . 4 ⊢ (Ⅎ𝑥𝜒 → ∀𝑥Ⅎ𝑥𝜒) |
| 7 | nfr 1532 | . . . . . 6 ⊢ (Ⅎ𝑥𝜒 → (𝜒 → ∀𝑥𝜒)) | |
| 8 | 7 | imim2d 54 | . . . . 5 ⊢ (Ⅎ𝑥𝜒 → ((𝜓 → 𝜒) → (𝜓 → ∀𝑥𝜒))) |
| 9 | 19.21t 1596 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → 𝜒) ↔ (𝜓 → ∀𝑥𝜒))) | |
| 10 | 9 | biimprd 158 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → ((𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 11 | 8, 10 | syl9r 73 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒)))) |
| 12 | 4, 6, 11 | alrimdh 1493 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → ∀𝑥((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒)))) |
| 13 | df-nf 1475 | . . 3 ⊢ (Ⅎ𝑥(𝜓 → 𝜒) ↔ ∀𝑥((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) | |
| 14 | 12, 13 | imbitrrdi 162 | . 2 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → Ⅎ𝑥(𝜓 → 𝜒))) |
| 15 | 1, 2, 14 | sylc 62 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfbid 1602 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 nfmod 2062 nfraldw 2529 nfraldxy 2530 nfixpxy 6776 cbvrald 15434 |
| Copyright terms: Public domain | W3C validator |