| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbalyz | GIF version | ||
| Description: Move universal quantifier in and out of substitution. Identical to sbal 2019 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| sbalyz | ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 1555 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfsbxy 1961 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 | 
| 3 | ax-4 1524 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 4 | 3 | sbimi 1778 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → [𝑧 / 𝑦]𝜑) | 
| 5 | 2, 4 | alrimi 1536 | . 2 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) | 
| 6 | sb6 1901 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
| 7 | 6 | albii 1484 | . . . 4 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) | 
| 8 | alcom 1492 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) | |
| 9 | 7, 8 | bitri 184 | . . 3 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) | 
| 10 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
| 11 | 10 | stdpc5 1598 | . . . . 5 ⊢ (∀𝑥(𝑦 = 𝑧 → 𝜑) → (𝑦 = 𝑧 → ∀𝑥𝜑)) | 
| 12 | 11 | alimi 1469 | . . . 4 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) | 
| 13 | sb2 1781 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) | 
| 15 | 9, 14 | sylbi 121 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) | 
| 16 | 5, 15 | impbii 126 | 1 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbal 2019 | 
| Copyright terms: Public domain | W3C validator |