Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbalyz | GIF version |
Description: Move universal quantifier in and out of substitution. Identical to sbal 1993 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.) |
Ref | Expression |
---|---|
sbalyz | ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfsbxy 1935 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 |
3 | ax-4 1503 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
4 | 3 | sbimi 1757 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → [𝑧 / 𝑦]𝜑) |
5 | 2, 4 | alrimi 1515 | . 2 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
6 | sb6 1879 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
7 | 6 | albii 1463 | . . . 4 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
8 | alcom 1471 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) | |
9 | 7, 8 | bitri 183 | . . 3 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) |
10 | nfv 1521 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
11 | 10 | stdpc5 1577 | . . . . 5 ⊢ (∀𝑥(𝑦 = 𝑧 → 𝜑) → (𝑦 = 𝑧 → ∀𝑥𝜑)) |
12 | 11 | alimi 1448 | . . . 4 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) |
13 | sb2 1760 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) |
15 | 9, 14 | sylbi 120 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) |
16 | 5, 15 | impbii 125 | 1 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbal 1993 |
Copyright terms: Public domain | W3C validator |