| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbalyz | GIF version | ||
| Description: Move universal quantifier in and out of substitution. Identical to sbal 2028 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| sbalyz | ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1564 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfsbxy 1970 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 |
| 3 | ax-4 1533 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 4 | 3 | sbimi 1787 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → [𝑧 / 𝑦]𝜑) |
| 5 | 2, 4 | alrimi 1545 | . 2 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
| 6 | sb6 1910 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
| 7 | 6 | albii 1493 | . . . 4 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
| 8 | alcom 1501 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) | |
| 9 | 7, 8 | bitri 184 | . . 3 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) |
| 10 | nfv 1551 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
| 11 | 10 | stdpc5 1607 | . . . . 5 ⊢ (∀𝑥(𝑦 = 𝑧 → 𝜑) → (𝑦 = 𝑧 → ∀𝑥𝜑)) |
| 12 | 11 | alimi 1478 | . . . 4 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) |
| 13 | sb2 1790 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) → [𝑧 / 𝑦]∀𝑥𝜑) |
| 15 | 9, 14 | sylbi 121 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) |
| 16 | 5, 15 | impbii 126 | 1 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sbal 2028 |
| Copyright terms: Public domain | W3C validator |