ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbalyz GIF version

Theorem sbalyz 2026
Description: Move universal quantifier in and out of substitution. Identical to sbal 2027 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
Assertion
Ref Expression
sbalyz ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbalyz
StepHypRef Expression
1 nfa1 1563 . . . 4 𝑥𝑥𝜑
21nfsbxy 1969 . . 3 𝑥[𝑧 / 𝑦]∀𝑥𝜑
3 ax-4 1532 . . . 4 (∀𝑥𝜑𝜑)
43sbimi 1786 . . 3 ([𝑧 / 𝑦]∀𝑥𝜑 → [𝑧 / 𝑦]𝜑)
52, 4alrimi 1544 . 2 ([𝑧 / 𝑦]∀𝑥𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)
6 sb6 1909 . . . . 5 ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑))
76albii 1492 . . . 4 (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑))
8 alcom 1500 . . . 4 (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
97, 8bitri 184 . . 3 (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
10 nfv 1550 . . . . . 6 𝑥 𝑦 = 𝑧
1110stdpc5 1606 . . . . 5 (∀𝑥(𝑦 = 𝑧𝜑) → (𝑦 = 𝑧 → ∀𝑥𝜑))
1211alimi 1477 . . . 4 (∀𝑦𝑥(𝑦 = 𝑧𝜑) → ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))
13 sb2 1789 . . . 4 (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) → [𝑧 / 𝑦]∀𝑥𝜑)
1412, 13syl 14 . . 3 (∀𝑦𝑥(𝑦 = 𝑧𝜑) → [𝑧 / 𝑦]∀𝑥𝜑)
159, 14sylbi 121 . 2 (∀𝑥[𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑)
165, 15impbii 126 1 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  sbal  2027
  Copyright terms: Public domain W3C validator