| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl23anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) | 
| sylXanc.2 | ⊢ (𝜑 → 𝜒) | 
| sylXanc.3 | ⊢ (𝜑 → 𝜃) | 
| sylXanc.4 | ⊢ (𝜑 → 𝜏) | 
| sylXanc.5 | ⊢ (𝜑 → 𝜂) | 
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | 
| Ref | Expression | 
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | 
| 4 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | sylXanc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1251 | 1 ⊢ (𝜑 → 𝜁) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: div2subapd 8865 gcdaddm 12151 restopn2 14419 | 
| Copyright terms: Public domain | W3C validator |