| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl32anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1253 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ioom 10410 modifeq2int 10538 modaddmodup 10539 seq3f1olemqsum 10665 seq3f1o 10669 exple1 10747 leexp2rd 10855 nn0ltexp2 10861 facubnd 10897 permnn 10923 dfabsmax 11572 expcnvre 11858 dvdsadd2b 12195 dvdsmulgcd 12390 sqgcd 12394 bezoutr 12397 cncongr2 12470 pw2dvds 12532 hashgcdlem 12604 modprm0 12621 modprmn0modprm0 12623 2idlcpblrng 14329 tgioo 15070 mpodvdsmulf1o 15506 perfectlem2 15516 lgssq 15561 lgssq2 15562 gausslemma2dlem7 15589 lgsquad2lem1 15602 lgsquad2lem2 15603 |
| Copyright terms: Public domain | W3C validator |