![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
sylXanc.5 | ⊢ (𝜑 → 𝜂) |
syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl32anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 3, 6, 7 | syl31anc 1252 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ioom 10332 modifeq2int 10460 modaddmodup 10461 seq3f1olemqsum 10587 seq3f1o 10591 exple1 10669 leexp2rd 10777 nn0ltexp2 10783 facubnd 10819 permnn 10845 dfabsmax 11364 expcnvre 11649 dvdsadd2b 11986 dvdsmulgcd 12165 sqgcd 12169 bezoutr 12172 cncongr2 12245 pw2dvds 12307 hashgcdlem 12379 modprm0 12395 modprmn0modprm0 12397 2idlcpblrng 14022 tgioo 14733 lgssq 15197 lgssq2 15198 gausslemma2dlem7 15225 lgsquad2lem1 15238 lgsquad2lem2 15239 |
Copyright terms: Public domain | W3C validator |