ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1257
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1252 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ioom  10367  modifeq2int  10495  modaddmodup  10496  seq3f1olemqsum  10622  seq3f1o  10626  exple1  10704  leexp2rd  10812  nn0ltexp2  10818  facubnd  10854  permnn  10880  dfabsmax  11399  expcnvre  11685  dvdsadd2b  12022  dvdsmulgcd  12217  sqgcd  12221  bezoutr  12224  cncongr2  12297  pw2dvds  12359  hashgcdlem  12431  modprm0  12448  modprmn0modprm0  12450  2idlcpblrng  14155  tgioo  14874  mpodvdsmulf1o  15310  perfectlem2  15320  lgssq  15365  lgssq2  15366  gausslemma2dlem7  15393  lgsquad2lem1  15406  lgsquad2lem2  15407
  Copyright terms: Public domain W3C validator