Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
sylXanc.5 | ⊢ (𝜑 → 𝜂) |
syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl32anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 304 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 3, 6, 7 | syl31anc 1220 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: ioom 10138 modifeq2int 10263 modaddmodup 10264 seq3f1olemqsum 10377 seq3f1o 10381 exple1 10453 leexp2rd 10558 facubnd 10596 permnn 10622 dfabsmax 11094 expcnvre 11377 dvdsadd2b 11707 dvdsmulgcd 11881 sqgcd 11885 bezoutr 11888 cncongr2 11953 pw2dvds 12012 hashgcdlem 12078 tgioo 12893 |
Copyright terms: Public domain | W3C validator |