ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1260
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1255 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 985
This theorem is referenced by:  ioom  10447  modifeq2int  10575  modaddmodup  10576  seq3f1olemqsum  10702  seq3f1o  10706  exple1  10784  leexp2rd  10892  nn0ltexp2  10898  facubnd  10934  permnn  10960  dfabsmax  11694  expcnvre  11980  dvdsadd2b  12317  dvdsmulgcd  12512  sqgcd  12516  bezoutr  12519  cncongr2  12592  pw2dvds  12654  hashgcdlem  12726  modprm0  12743  modprmn0modprm0  12745  2idlcpblrng  14452  tgioo  15193  mpodvdsmulf1o  15629  perfectlem2  15639  lgssq  15684  lgssq2  15685  gausslemma2dlem7  15712  lgsquad2lem1  15725  lgsquad2lem2  15726
  Copyright terms: Public domain W3C validator