| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl32anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1252 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ioom 10367 modifeq2int 10495 modaddmodup 10496 seq3f1olemqsum 10622 seq3f1o 10626 exple1 10704 leexp2rd 10812 nn0ltexp2 10818 facubnd 10854 permnn 10880 dfabsmax 11399 expcnvre 11685 dvdsadd2b 12022 dvdsmulgcd 12217 sqgcd 12221 bezoutr 12224 cncongr2 12297 pw2dvds 12359 hashgcdlem 12431 modprm0 12448 modprmn0modprm0 12450 2idlcpblrng 14155 tgioo 14874 mpodvdsmulf1o 15310 perfectlem2 15320 lgssq 15365 lgssq2 15366 gausslemma2dlem7 15393 lgsquad2lem1 15406 lgsquad2lem2 15407 |
| Copyright terms: Public domain | W3C validator |