ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1279
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1274 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  ioom  10488  modifeq2int  10616  modaddmodup  10617  seq3f1olemqsum  10743  seq3f1o  10747  exple1  10825  leexp2rd  10933  nn0ltexp2  10939  facubnd  10975  permnn  11001  dfabsmax  11736  expcnvre  12022  dvdsadd2b  12359  dvdsmulgcd  12554  sqgcd  12558  bezoutr  12561  cncongr2  12634  pw2dvds  12696  hashgcdlem  12768  modprm0  12785  modprmn0modprm0  12787  2idlcpblrng  14495  tgioo  15236  mpodvdsmulf1o  15672  perfectlem2  15682  lgssq  15727  lgssq2  15728  gausslemma2dlem7  15755  lgsquad2lem1  15768  lgsquad2lem2  15769
  Copyright terms: Public domain W3C validator