ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1257
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1252 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ioom  10369  modifeq2int  10497  modaddmodup  10498  seq3f1olemqsum  10624  seq3f1o  10628  exple1  10706  leexp2rd  10814  nn0ltexp2  10820  facubnd  10856  permnn  10882  dfabsmax  11401  expcnvre  11687  dvdsadd2b  12024  dvdsmulgcd  12219  sqgcd  12223  bezoutr  12226  cncongr2  12299  pw2dvds  12361  hashgcdlem  12433  modprm0  12450  modprmn0modprm0  12452  2idlcpblrng  14157  tgioo  14876  mpodvdsmulf1o  15312  perfectlem2  15322  lgssq  15367  lgssq2  15368  gausslemma2dlem7  15395  lgsquad2lem1  15408  lgsquad2lem2  15409
  Copyright terms: Public domain W3C validator