![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
sylXanc.5 | ⊢ (𝜑 → 𝜂) |
syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl32anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 3, 6, 7 | syl31anc 1252 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ioom 10329 modifeq2int 10457 modaddmodup 10458 seq3f1olemqsum 10584 seq3f1o 10588 exple1 10666 leexp2rd 10774 nn0ltexp2 10780 facubnd 10816 permnn 10842 dfabsmax 11361 expcnvre 11646 dvdsadd2b 11983 dvdsmulgcd 12162 sqgcd 12166 bezoutr 12169 cncongr2 12242 pw2dvds 12304 hashgcdlem 12376 modprm0 12392 modprmn0modprm0 12394 2idlcpblrng 14019 tgioo 14714 lgssq 15156 lgssq2 15157 gausslemma2dlem7 15184 |
Copyright terms: Public domain | W3C validator |