ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1258
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1253 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ioom  10410  modifeq2int  10538  modaddmodup  10539  seq3f1olemqsum  10665  seq3f1o  10669  exple1  10747  leexp2rd  10855  nn0ltexp2  10861  facubnd  10897  permnn  10923  dfabsmax  11572  expcnvre  11858  dvdsadd2b  12195  dvdsmulgcd  12390  sqgcd  12394  bezoutr  12397  cncongr2  12470  pw2dvds  12532  hashgcdlem  12604  modprm0  12621  modprmn0modprm0  12623  2idlcpblrng  14329  tgioo  15070  mpodvdsmulf1o  15506  perfectlem2  15516  lgssq  15561  lgssq2  15562  gausslemma2dlem7  15589  lgsquad2lem1  15602  lgsquad2lem2  15603
  Copyright terms: Public domain W3C validator