| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| syl32anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl32anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl32anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1252 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ioom 10369 modifeq2int 10497 modaddmodup 10498 seq3f1olemqsum 10624 seq3f1o 10628 exple1 10706 leexp2rd 10814 nn0ltexp2 10820 facubnd 10856 permnn 10882 dfabsmax 11401 expcnvre 11687 dvdsadd2b 12024 dvdsmulgcd 12219 sqgcd 12223 bezoutr 12226 cncongr2 12299 pw2dvds 12361 hashgcdlem 12433 modprm0 12450 modprmn0modprm0 12452 2idlcpblrng 14157 tgioo 14876 mpodvdsmulf1o 15312 perfectlem2 15322 lgssq 15367 lgssq2 15368 gausslemma2dlem7 15395 lgsquad2lem1 15408 lgsquad2lem2 15409 |
| Copyright terms: Public domain | W3C validator |