ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc GIF version

Theorem syl32anc 1257
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl32anc.6 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl32anc (𝜑𝜁)

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl32anc.6 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl31anc 1252 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ioom  10353  modifeq2int  10481  modaddmodup  10482  seq3f1olemqsum  10608  seq3f1o  10612  exple1  10690  leexp2rd  10798  nn0ltexp2  10804  facubnd  10840  permnn  10866  dfabsmax  11385  expcnvre  11671  dvdsadd2b  12008  dvdsmulgcd  12203  sqgcd  12207  bezoutr  12210  cncongr2  12283  pw2dvds  12345  hashgcdlem  12417  modprm0  12434  modprmn0modprm0  12436  2idlcpblrng  14105  tgioo  14816  mpodvdsmulf1o  15252  perfectlem2  15262  lgssq  15307  lgssq2  15308  gausslemma2dlem7  15335  lgsquad2lem1  15348  lgsquad2lem2  15349
  Copyright terms: Public domain W3C validator