![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restopn2 | GIF version |
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
restopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3837 | . . . . 5 ⊢ (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
2 | elssuni 3837 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
3 | eqid 2177 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | restuni 13565 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
5 | 2, 4 | sylan2 286 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
6 | 5 | sseq2d 3185 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴))) |
7 | 1, 6 | imbitrrid 156 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ 𝐴)) |
8 | 7 | pm4.71rd 394 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
9 | simpll 527 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) | |
10 | simplr 528 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝐽) | |
11 | ssidd 3176 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝐴) | |
12 | simpr 110 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
13 | restopnb 13574 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ (𝐴 ∈ 𝐽 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
14 | 9, 10, 10, 11, 12, 13 | syl23anc 1245 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
15 | 14 | pm5.32da 452 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
16 | 8, 15 | bitr4d 191 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽))) |
17 | ancom 266 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) | |
18 | 16, 17 | bitrdi 196 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 ∪ cuni 3809 (class class class)co 5874 ↾t crest 12678 Topctop 13388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-rest 12680 df-topgen 12699 df-top 13389 df-topon 13402 df-bases 13434 |
This theorem is referenced by: restdis 13577 |
Copyright terms: Public domain | W3C validator |