![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restopn2 | GIF version |
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
restopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3728 | . . . . 5 ⊢ (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
2 | elssuni 3728 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
3 | eqid 2113 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | restuni 12177 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
5 | 2, 4 | sylan2 282 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
6 | 5 | sseq2d 3091 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴))) |
7 | 1, 6 | syl5ibr 155 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ 𝐴)) |
8 | 7 | pm4.71rd 389 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
9 | simpll 501 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) | |
10 | simplr 502 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝐽) | |
11 | ssidd 3082 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝐴) | |
12 | simpr 109 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
13 | restopnb 12186 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ (𝐴 ∈ 𝐽 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
14 | 9, 10, 10, 11, 12, 13 | syl23anc 1204 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
15 | 14 | pm5.32da 445 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
16 | 8, 15 | bitr4d 190 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽))) |
17 | ancom 264 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) | |
18 | 16, 17 | syl6bb 195 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 ⊆ wss 3035 ∪ cuni 3700 (class class class)co 5726 ↾t crest 11956 Topctop 12000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5989 df-2nd 5990 df-rest 11958 df-topgen 11977 df-top 12001 df-topon 12014 df-bases 12046 |
This theorem is referenced by: restdis 12189 |
Copyright terms: Public domain | W3C validator |