Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl13anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl13anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl13anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 2, 3, 4 | 3jca 1162 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
6 | syl13anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 5, 6 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: syl23anc 1224 syl33anc 1232 caovassd 5970 caovcand 5973 caovordid 5977 caovordd 5979 caovdid 5986 caovdird 5989 swoer 6497 swoord1 6498 swoord2 6499 fimax2gtrilemstep 6834 iunfidisj 6879 ssfii 6907 suplub2ti 6933 prarloclem3 7396 fzosubel3 10073 seq3split 10356 seq3caopr 10360 zsumdc 11258 fsumiun 11351 divalglemex 11786 strle1g 12219 psmetsym 12668 psmettri 12669 psmetge0 12670 psmetres2 12672 xmetge0 12704 xmetsym 12707 xmettri 12711 metrtri 12716 xmetres2 12718 bldisj 12740 xblss2ps 12743 xblss2 12744 xmeter 12775 xmetxp 12846 |
Copyright terms: Public domain | W3C validator |