Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl13anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl13anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl13anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 2, 3, 4 | 3jca 1167 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
6 | syl13anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 5, 6 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl23anc 1235 syl33anc 1243 caovassd 6001 caovcand 6004 caovordid 6008 caovordd 6010 caovdid 6017 caovdird 6020 swoer 6529 swoord1 6530 swoord2 6531 fimax2gtrilemstep 6866 iunfidisj 6911 ssfii 6939 suplub2ti 6966 prarloclem3 7438 fzosubel3 10131 seq3split 10414 seq3caopr 10418 zsumdc 11325 fsumiun 11418 divalglemex 11859 pcgcd1 12259 strle1g 12485 psmetsym 12969 psmettri 12970 psmetge0 12971 psmetres2 12973 xmetge0 13005 xmetsym 13008 xmettri 13012 metrtri 13017 xmetres2 13019 bldisj 13041 xblss2ps 13044 xblss2 13045 xmeter 13076 xmetxp 13147 |
Copyright terms: Public domain | W3C validator |