Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl13anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl13anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl13anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 2, 3, 4 | 3jca 1172 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
6 | syl13anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 5, 6 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: syl23anc 1240 syl33anc 1248 caovassd 6012 caovcand 6015 caovordid 6019 caovordd 6021 caovdid 6028 caovdird 6031 swoer 6541 swoord1 6542 swoord2 6543 fimax2gtrilemstep 6878 iunfidisj 6923 ssfii 6951 suplub2ti 6978 prarloclem3 7459 fzosubel3 10152 seq3split 10435 seq3caopr 10439 zsumdc 11347 fsumiun 11440 divalglemex 11881 pcgcd1 12281 strle1g 12508 mnd32g 12663 mnd12g 12664 mnd4g 12665 ismndd 12673 mndinvmod 12678 grpasscan2 12763 grpidrcan 12764 grpidlcan 12765 grpinvinv 12766 psmetsym 13123 psmettri 13124 psmetge0 13125 psmetres2 13127 xmetge0 13159 xmetsym 13162 xmettri 13166 metrtri 13171 xmetres2 13173 bldisj 13195 xblss2ps 13198 xblss2 13199 xmeter 13230 xmetxp 13301 |
Copyright terms: Public domain | W3C validator |