ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm GIF version

Theorem gcdaddm 11708
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 11688 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
213adant1 1000 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
32simpld 111 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
4 simp1 982 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
5 1zzd 9105 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
6 gcdcl 11691 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
763adant1 1000 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
87nn0zd 9195 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
9 simp2 983 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
10 simp3 984 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
11 dvds2ln 11562 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
124, 5, 8, 9, 10, 11syl23anc 1224 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
132, 12mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
1410zcnd 9198 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1514mulid2d 7808 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · 𝑁) = 𝑁)
1615oveq2d 5798 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
1713, 16breqtrd 3962 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁))
183, 17jca 304 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)))
194, 9zmulcld 9203 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2019, 10zaddcld 9201 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
21 dvdslegcd 11689 . . . . . . . 8 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2221ex 114 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
238, 9, 20, 22syl3anc 1217 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
2418, 23mpid 42 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
25 gcddvds 11688 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
269, 20, 25syl2anc 409 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
2726simpld 111 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀)
284znegcld 9199 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝐾 ∈ ℤ)
299, 20gcdcld 11693 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
3029nn0zd 9195 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ)
31 dvds2ln 11562 . . . . . . . . . 10 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3228, 5, 30, 9, 20, 31syl23anc 1224 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3326, 32mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
344zcnd 9198 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
359zcnd 9198 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3634, 35mulneg1d 8197 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3720zcnd 9198 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
3837mulid2d 7808 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
3936, 38oveq12d 5800 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4034, 35mulcld 7810 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
4140negcld 8084 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝐾 · 𝑀) ∈ ℂ)
4240, 41addcomd 7937 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = (-(𝐾 · 𝑀) + (𝐾 · 𝑀)))
4340negidd 8087 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0)
4442, 43eqtr3d 2175 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0)
4544oveq1d 5797 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁))
4641, 40, 14addassd 7812 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4714addid2d 7936 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 + 𝑁) = 𝑁)
4845, 46, 473eqtr3d 2181 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁)
4939, 48eqtrd 2173 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁)
5033, 49breqtrd 3962 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁)
5127, 50jca 304 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁))
52 dvdslegcd 11689 . . . . . . . 8 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5352ex 114 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5430, 9, 10, 53syl3anc 1217 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5551, 54mpid 42 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5624, 55anim12d 333 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
577nn0red 9055 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
5829nn0red 9055 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ)
5957, 58letri3d 7903 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6056, 59sylibrd 168 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
61 0zd 9090 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
62 zdceq 9150 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
639, 61, 62syl2anc 409 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
64 zdceq 9150 . . . . . . 7 ((((𝐾 · 𝑀) + 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
6520, 61, 64syl2anc 409 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
66 dcan 919 . . . . . 6 (DECID 𝑀 = 0 → (DECID ((𝐾 · 𝑀) + 𝑁) = 0 → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)))
6763, 65, 66sylc 62 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
68 zdceq 9150 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6910, 61, 68syl2anc 409 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
70 dcan 919 . . . . . 6 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∧ 𝑁 = 0)))
7163, 69, 70sylc 62 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
72 orandc 924 . . . . 5 ((DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ DECID (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
7367, 71, 72syl2anc 409 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
74 simpr 109 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7574oveq2d 5798 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = (𝐾 · 0))
7634mul01d 8179 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 0) = 0)
7776adantr 274 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 0) = 0)
7875, 77eqtrd 2173 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = 0)
7978oveq1d 5797 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
8047adantr 274 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
8179, 80eqtrd 2173 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
8281eqeq1d 2149 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
8382pm5.32da 448 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0)))
84 oveq12 5791 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
8584adantl 275 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
86 oveq12 5791 . . . . . . . . . 10 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8783, 86syl6bir 163 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0)))
8887imp 123 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8985, 88eqtr4d 2176 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
9089ex 114 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9183, 90sylbid 149 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9291, 90jaod 707 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9373, 92sylbird 169 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
94 dcn 828 . . . . . 6 (DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
9567, 94syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
96 dcn 828 . . . . . 6 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
9771, 96syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
98 dcan 919 . . . . 5 (DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
9995, 97, 98sylc 62 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
100 exmiddc 822 . . . 4 (DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10199, 100syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10260, 93, 101mpjaod 708 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
10340, 14addcomd 7937 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
104103oveq2d 5798 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
105102, 104eqtrd 2173 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  (class class class)co 5782  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649  cle 7825  -cneg 7958  0cn0 9001  cz 9078  cdvds 11529   gcd cgcd 11671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672
This theorem is referenced by:  gcdadd  11709  gcdid  11710  modgcd  11715  gcdmultipled  11717  gcdmultiple  11744
  Copyright terms: Public domain W3C validator