ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm GIF version

Theorem gcdaddm 11579
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 11559 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
213adant1 982 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
32simpld 111 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
4 simp1 964 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
5 1zzd 9035 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
6 gcdcl 11562 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
763adant1 982 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
87nn0zd 9125 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
9 simp2 965 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
10 simp3 966 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
11 dvds2ln 11433 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
124, 5, 8, 9, 10, 11syl23anc 1206 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
132, 12mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
1410zcnd 9128 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1514mulid2d 7748 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · 𝑁) = 𝑁)
1615oveq2d 5756 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
1713, 16breqtrd 3922 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁))
183, 17jca 302 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)))
194, 9zmulcld 9133 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2019, 10zaddcld 9131 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
21 dvdslegcd 11560 . . . . . . . 8 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2221ex 114 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
238, 9, 20, 22syl3anc 1199 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
2418, 23mpid 42 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
25 gcddvds 11559 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
269, 20, 25syl2anc 406 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
2726simpld 111 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀)
284znegcld 9129 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝐾 ∈ ℤ)
299, 20gcdcld 11564 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
3029nn0zd 9125 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ)
31 dvds2ln 11433 . . . . . . . . . 10 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3228, 5, 30, 9, 20, 31syl23anc 1206 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3326, 32mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
344zcnd 9128 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
359zcnd 9128 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3634, 35mulneg1d 8137 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3720zcnd 9128 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
3837mulid2d 7748 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
3936, 38oveq12d 5758 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4034, 35mulcld 7750 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
4140negcld 8024 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝐾 · 𝑀) ∈ ℂ)
4240, 41addcomd 7877 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = (-(𝐾 · 𝑀) + (𝐾 · 𝑀)))
4340negidd 8027 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0)
4442, 43eqtr3d 2150 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0)
4544oveq1d 5755 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁))
4641, 40, 14addassd 7752 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4714addid2d 7876 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 + 𝑁) = 𝑁)
4845, 46, 473eqtr3d 2156 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁)
4939, 48eqtrd 2148 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁)
5033, 49breqtrd 3922 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁)
5127, 50jca 302 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁))
52 dvdslegcd 11560 . . . . . . . 8 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5352ex 114 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5430, 9, 10, 53syl3anc 1199 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5551, 54mpid 42 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5624, 55anim12d 331 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
577nn0red 8985 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
5829nn0red 8985 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ)
5957, 58letri3d 7843 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6056, 59sylibrd 168 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
61 0zd 9020 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
62 zdceq 9080 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
639, 61, 62syl2anc 406 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
64 zdceq 9080 . . . . . . 7 ((((𝐾 · 𝑀) + 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
6520, 61, 64syl2anc 406 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
66 dcan 901 . . . . . 6 (DECID 𝑀 = 0 → (DECID ((𝐾 · 𝑀) + 𝑁) = 0 → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)))
6763, 65, 66sylc 62 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
68 zdceq 9080 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6910, 61, 68syl2anc 406 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
70 dcan 901 . . . . . 6 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∧ 𝑁 = 0)))
7163, 69, 70sylc 62 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
72 orandc 906 . . . . 5 ((DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ DECID (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
7367, 71, 72syl2anc 406 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
74 simpr 109 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7574oveq2d 5756 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = (𝐾 · 0))
7634mul01d 8119 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 0) = 0)
7776adantr 272 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 0) = 0)
7875, 77eqtrd 2148 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = 0)
7978oveq1d 5755 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
8047adantr 272 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
8179, 80eqtrd 2148 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
8281eqeq1d 2124 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
8382pm5.32da 445 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0)))
84 oveq12 5749 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
8584adantl 273 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
86 oveq12 5749 . . . . . . . . . 10 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8783, 86syl6bir 163 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0)))
8887imp 123 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8985, 88eqtr4d 2151 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
9089ex 114 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9183, 90sylbid 149 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9291, 90jaod 689 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9373, 92sylbird 169 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
94 dcn 810 . . . . . 6 (DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
9567, 94syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
96 dcn 810 . . . . . 6 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
9771, 96syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
98 dcan 901 . . . . 5 (DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
9995, 97, 98sylc 62 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
100 exmiddc 804 . . . 4 (DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10199, 100syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10260, 93, 101mpjaod 690 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
10340, 14addcomd 7877 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
104103oveq2d 5756 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
105102, 104eqtrd 2148 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  DECID wdc 802  w3a 945   = wceq 1314  wcel 1463   class class class wbr 3897  (class class class)co 5740  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589  cle 7765  -cneg 7898  0cn0 8931  cz 9008  cdvds 11400   gcd cgcd 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-sup 6837  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-fz 9742  df-fzo 9871  df-fl 9994  df-mod 10047  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-dvds 11401  df-gcd 11543
This theorem is referenced by:  gcdadd  11580  gcdid  11581  modgcd  11586  gcdmultipled  11588  gcdmultiple  11615
  Copyright terms: Public domain W3C validator