Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > div2subapd | GIF version |
Description: Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2subap 8714. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
div2subd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
div2subd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
div2subd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
div2subd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
div2subd.5 | ⊢ (𝜑 → 𝐶 # 𝐷) |
Ref | Expression |
---|---|
div2subapd | ⊢ (𝜑 → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div2subd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | div2subd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | div2subd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | div2subd.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | div2subd.5 | . 2 ⊢ (𝜑 → 𝐶 # 𝐷) | |
6 | div2subap 8714 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) | |
7 | 1, 2, 3, 4, 5, 6 | syl23anc 1227 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 class class class wbr 3967 (class class class)co 5826 ℂcc 7732 − cmin 8050 # cap 8460 / cdiv 8549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulrcl 7833 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-precex 7844 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 ax-pre-mulgt0 7851 ax-pre-mulext 7852 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-id 4255 df-po 4258 df-iso 4259 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-iota 5137 df-fun 5174 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-reap 8454 df-ap 8461 df-div 8550 |
This theorem is referenced by: pwm1geoserap1 11416 |
Copyright terms: Public domain | W3C validator |