| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an9b | GIF version | ||
| Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| syl3an9b.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| syl3an9b.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| syl3an9b.3 | ⊢ (𝜂 → (𝜏 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| syl3an9b | ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 ↔ 𝜁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an9b.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | syl3an9b.2 | . . . 4 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 462 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | syl3an9b.3 | . . 3 ⊢ (𝜂 → (𝜏 ↔ 𝜁)) | |
| 5 | 3, 4 | sylan9bb 462 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜂) → (𝜓 ↔ 𝜁)) |
| 6 | 5 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 ↔ 𝜁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: eloprabg 6014 |
| Copyright terms: Public domain | W3C validator |