| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 795 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 795 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 982 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 982 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 |
| This theorem is referenced by: ordtriexmid 4587 ontriexmidim 4588 wetriext 4643 nntri3or 6602 tridc 7022 exmidontriimlem3 7366 exmidontriimlem4 7367 exmidontriim 7368 onntri35 7383 ltsopi 7468 pitri3or 7470 nqtri3or 7544 elz 9409 ztri3or 9450 qtri3or 10420 trilpo 16184 trirec0 16185 reap0 16199 |
| Copyright terms: Public domain | W3C validator |