ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orbi123d GIF version

Theorem 3orbi123d 1322
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3orbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orbi12d 794 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orbi12d 794 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) ↔ ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 981 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 981 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73bitr4g 223 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981
This theorem is referenced by:  ordtriexmid  4554  ontriexmidim  4555  wetriext  4610  nntri3or  6548  tridc  6957  exmidontriimlem3  7285  exmidontriimlem4  7286  exmidontriim  7287  onntri35  7299  ltsopi  7382  pitri3or  7384  nqtri3or  7458  elz  9322  ztri3or  9363  qtri3or  10313  trilpo  15603  trirec0  15604  reap0  15618
  Copyright terms: Public domain W3C validator