ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falortru GIF version

Theorem falortru 1341
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru ((⊥ ∨ ⊤) ↔ ⊤)

Proof of Theorem falortru
StepHypRef Expression
1 tru 1291 . . 3
21olci 684 . 2 (⊥ ∨ ⊤)
32bitru 1299 1 ((⊥ ∨ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 103  wo 662  wtru 1288  wfal 1292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115  df-tru 1290
This theorem is referenced by:  falxortru  1355
  Copyright terms: Public domain W3C validator