ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falortru GIF version

Theorem falortru 1397
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru ((⊥ ∨ ⊤) ↔ ⊤)

Proof of Theorem falortru
StepHypRef Expression
1 tru 1347 . . 3
21olci 722 . 2 (⊥ ∨ ⊤)
32bitru 1355 1 ((⊥ ∨ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698  wtru 1344  wfal 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-tru 1346
This theorem is referenced by:  falxortru  1411
  Copyright terms: Public domain W3C validator