Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falortru | GIF version |
Description: A ∨ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
falortru | ⊢ ((⊥ ∨ ⊤) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1336 | . . 3 ⊢ ⊤ | |
2 | 1 | olci 722 | . 2 ⊢ (⊥ ∨ ⊤) |
3 | 2 | bitru 1344 | 1 ⊢ ((⊥ ∨ ⊤) ↔ ⊤) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 ⊤wtru 1333 ⊥wfal 1337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-tru 1335 |
This theorem is referenced by: falxortru 1400 |
Copyright terms: Public domain | W3C validator |