| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpnegap | GIF version | ||
| Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.) |
| Ref | Expression |
|---|---|
| rpnegap | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8107 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 2 | reapltxor 8697 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) | |
| 3 | 1, 2 | mpan2 425 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) |
| 4 | xorcom 1408 | . . . . . 6 ⊢ ((𝐴 < 0 ⊻ 0 < 𝐴) ↔ (0 < 𝐴 ⊻ 𝐴 < 0)) | |
| 5 | 3, 4 | bitrdi 196 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (0 < 𝐴 ⊻ 𝐴 < 0))) |
| 6 | 5 | pm5.32i 454 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0))) |
| 7 | anxordi 1420 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0)) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
| 8 | 6, 7 | bitri 184 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
| 9 | 8 | biimpi 120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
| 10 | elrp 9812 | . . . 4 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))) |
| 12 | elrp 9812 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) | |
| 13 | renegcl 8368 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 14 | 13 | biantrurd 305 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 < -𝐴 ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))) |
| 15 | 12, 14 | bitr4id 199 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 0 < -𝐴)) |
| 16 | lt0neg1 8576 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
| 17 | ibar 301 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
| 18 | 15, 16, 17 | 3bitr2d 216 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
| 20 | 11, 19 | xorbi12d 1402 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))) |
| 21 | 9, 20 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ⊻ wxo 1395 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 0cc0 7960 < clt 8142 -cneg 8279 # cap 8689 ℝ+crp 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-rp 9811 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |