![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpnegap | GIF version |
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.) |
Ref | Expression |
---|---|
rpnegap | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7585 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | reapltxor 8163 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) | |
3 | 1, 2 | mpan2 417 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) |
4 | xorcom 1331 | . . . . . 6 ⊢ ((𝐴 < 0 ⊻ 0 < 𝐴) ↔ (0 < 𝐴 ⊻ 𝐴 < 0)) | |
5 | 3, 4 | syl6bb 195 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (0 < 𝐴 ⊻ 𝐴 < 0))) |
6 | 5 | pm5.32i 443 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0))) |
7 | anxordi 1343 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0)) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
8 | 6, 7 | bitri 183 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
9 | 8 | biimpi 119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
10 | elrp 9235 | . . . 4 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))) |
12 | renegcl 7840 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
13 | 12 | biantrurd 300 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 < -𝐴 ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))) |
14 | elrp 9235 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) | |
15 | 13, 14 | syl6rbbr 198 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 0 < -𝐴)) |
16 | lt0neg1 8043 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
17 | ibar 296 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
18 | 15, 16, 17 | 3bitr2d 215 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
19 | 18 | adantr 271 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
20 | 11, 19 | xorbi12d 1325 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))) |
21 | 9, 20 | mpbird 166 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ⊻ wxo 1318 ∈ wcel 1445 class class class wbr 3867 ℝcr 7446 0cc0 7447 < clt 7619 -cneg 7751 # cap 8155 ℝ+crp 9233 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-xor 1319 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-po 4147 df-iso 4148 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-ltxr 7624 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-rp 9234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |