ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpnegap GIF version

Theorem rpnegap 9614
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
Assertion
Ref Expression
rpnegap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))

Proof of Theorem rpnegap
StepHypRef Expression
1 0re 7891 . . . . . . 7 0 ∈ ℝ
2 reapltxor 8479 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴)))
31, 2mpan2 422 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴)))
4 xorcom 1377 . . . . . 6 ((𝐴 < 0 ⊻ 0 < 𝐴) ↔ (0 < 𝐴𝐴 < 0))
53, 4bitrdi 195 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (0 < 𝐴𝐴 < 0)))
65pm5.32i 450 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ (0 < 𝐴𝐴 < 0)))
7 anxordi 1389 . . . 4 ((𝐴 ∈ ℝ ∧ (0 < 𝐴𝐴 < 0)) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
86, 7bitri 183 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
98biimpi 119 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
10 elrp 9583 . . . 4 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1110a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
12 elrp 9583 . . . . . 6 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
13 renegcl 8151 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
1413biantrurd 303 . . . . . 6 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
1512, 14bitr4id 198 . . . . 5 (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 0 < -𝐴))
16 lt0neg1 8358 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
17 ibar 299 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
1815, 16, 173bitr2d 215 . . . 4 (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
1918adantr 274 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
2011, 19xorbi12d 1371 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))))
219, 20mpbird 166 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wxo 1364  wcel 2135   class class class wbr 3977  cr 7744  0cc0 7745   < clt 7925  -cneg 8062   # cap 8471  +crp 9581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-xor 1365  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-po 4269  df-iso 4270  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-iota 5148  df-fun 5185  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-ltxr 7930  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-rp 9582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator