ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpnegap GIF version

Theorem rpnegap 9060
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
Assertion
Ref Expression
rpnegap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))

Proof of Theorem rpnegap
StepHypRef Expression
1 0re 7390 . . . . . . 7 0 ∈ ℝ
2 reapltxor 7965 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴)))
31, 2mpan2 416 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴)))
4 xorcom 1320 . . . . . 6 ((𝐴 < 0 ⊻ 0 < 𝐴) ↔ (0 < 𝐴𝐴 < 0))
53, 4syl6bb 194 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (0 < 𝐴𝐴 < 0)))
65pm5.32i 442 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ (0 < 𝐴𝐴 < 0)))
7 anxordi 1332 . . . 4 ((𝐴 ∈ ℝ ∧ (0 < 𝐴𝐴 < 0)) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
86, 7bitri 182 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
98biimpi 118 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
10 elrp 9030 . . . 4 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1110a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
12 renegcl 7645 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
1312biantrurd 299 . . . . . 6 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
14 elrp 9030 . . . . . 6 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
1513, 14syl6rbbr 197 . . . . 5 (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 0 < -𝐴))
16 lt0neg1 7848 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
17 ibar 295 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
1815, 16, 173bitr2d 214 . . . 4 (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
1918adantr 270 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))
2011, 19xorbi12d 1314 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))))
219, 20mpbird 165 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wxo 1307  wcel 1434   class class class wbr 3811  cr 7251  0cc0 7252   < clt 7424  -cneg 7556   # cap 7957  +crp 9028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-xor 1308  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-po 4086  df-iso 4087  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-pnf 7426  df-mnf 7427  df-ltxr 7429  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-rp 9029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator