Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpnegap | GIF version |
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.) |
Ref | Expression |
---|---|
rpnegap | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | reapltxor 8487 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) | |
3 | 1, 2 | mpan2 422 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ⊻ 0 < 𝐴))) |
4 | xorcom 1378 | . . . . . 6 ⊢ ((𝐴 < 0 ⊻ 0 < 𝐴) ↔ (0 < 𝐴 ⊻ 𝐴 < 0)) | |
5 | 3, 4 | bitrdi 195 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (0 < 𝐴 ⊻ 𝐴 < 0))) |
6 | 5 | pm5.32i 450 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0))) |
7 | anxordi 1390 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (0 < 𝐴 ⊻ 𝐴 < 0)) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
8 | 6, 7 | bitri 183 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
9 | 8 | biimpi 119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
10 | elrp 9591 | . . . 4 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))) |
12 | elrp 9591 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) | |
13 | renegcl 8159 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
14 | 13 | biantrurd 303 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 < -𝐴 ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))) |
15 | 12, 14 | bitr4id 198 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 0 < -𝐴)) |
16 | lt0neg1 8366 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
17 | ibar 299 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) | |
18 | 15, 16, 17 | 3bitr2d 215 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
19 | 18 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (-𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 𝐴 < 0))) |
20 | 11, 19 | xorbi12d 1372 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ((𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ⊻ (𝐴 ∈ ℝ ∧ 𝐴 < 0)))) |
21 | 9, 20 | mpbird 166 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ⊻ wxo 1365 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 -cneg 8070 # cap 8479 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-rp 9590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |