![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anxordi | GIF version |
Description: Conjunction distributes over exclusive-or. (Contributed by Mario Carneiro and Jim Kingdon, 7-Oct-2018.) |
Ref | Expression |
---|---|
anxordi | ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) → 𝜑) | |
2 | df-xor 1376 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) ↔ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) ∧ ¬ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)))) | |
3 | 2 | simplbi 274 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | simpl 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
5 | simpl 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜑) | |
6 | 4, 5 | jaoi 716 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → 𝜑) |
7 | 3, 6 | syl 14 | . 2 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) → 𝜑) |
8 | ibar 301 | . . 3 ⊢ (𝜑 → ((𝜓 ⊻ 𝜒) ↔ (𝜑 ∧ (𝜓 ⊻ 𝜒)))) | |
9 | ibar 301 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
10 | ibar 301 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
11 | 9, 10 | xorbi12d 1382 | . . 3 ⊢ (𝜑 → ((𝜓 ⊻ 𝜒) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)))) |
12 | 8, 11 | bitr3d 190 | . 2 ⊢ (𝜑 → ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)))) |
13 | 1, 7, 12 | pm5.21nii 704 | 1 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 708 ⊻ wxo 1375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-xor 1376 |
This theorem is referenced by: rpnegap 9686 |
Copyright terms: Public domain | W3C validator |