Proof of Theorem anxordi
Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. 2
⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) → 𝜑) |
2 | | df-xor 1366 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) ↔ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) ∧ ¬ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)))) |
3 | 2 | simplbi 272 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | | simpl 108 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
5 | | simpl 108 |
. . . 4
⊢ ((𝜑 ∧ 𝜒) → 𝜑) |
6 | 4, 5 | jaoi 706 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → 𝜑) |
7 | 3, 6 | syl 14 |
. 2
⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) → 𝜑) |
8 | | ibar 299 |
. . 3
⊢ (𝜑 → ((𝜓 ⊻ 𝜒) ↔ (𝜑 ∧ (𝜓 ⊻ 𝜒)))) |
9 | | ibar 299 |
. . . 4
⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
10 | | ibar 299 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) |
11 | 9, 10 | xorbi12d 1372 |
. . 3
⊢ (𝜑 → ((𝜓 ⊻ 𝜒) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)))) |
12 | 8, 11 | bitr3d 189 |
. 2
⊢ (𝜑 → ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)))) |
13 | 1, 7, 12 | pm5.21nii 694 |
1
⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |