| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcglem | Structured version Visualization version GIF version | ||
| Description: Lemma for 0funcg 48891. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| 0funcglem.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| 0funcglem.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜂)) |
| 0funcglem.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜁)) |
| 0funcglem.4 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| 0funcglem | ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcglem.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 2 | 0funcglem.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 3 | df-3an 1089 | . . . 4 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏)) | |
| 4 | 2, 3 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝜓 ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏))) |
| 5 | 1, 4 | mpbiran2d 708 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| 6 | 0funcglem.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜂)) | |
| 7 | 0funcglem.3 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜁)) | |
| 8 | 6, 7 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) ↔ (𝜂 ∧ 𝜁))) |
| 9 | 5, 8 | bitrd 279 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: 0funcg2 48890 |
| Copyright terms: Public domain | W3C validator |