Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcglem Structured version   Visualization version   GIF version

Theorem 0funcglem 48889
Description: Lemma for 0funcg 48891. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcglem.1 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
0funcglem.2 (𝜑 → (𝜒𝜂))
0funcglem.3 (𝜑 → (𝜃𝜁))
0funcglem.4 (𝜑𝜏)
Assertion
Ref Expression
0funcglem (𝜑 → (𝜓 ↔ (𝜂𝜁)))

Proof of Theorem 0funcglem
StepHypRef Expression
1 0funcglem.4 . . 3 (𝜑𝜏)
2 0funcglem.1 . . . 4 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
3 df-3an 1089 . . . 4 ((𝜒𝜃𝜏) ↔ ((𝜒𝜃) ∧ 𝜏))
42, 3bitrdi 287 . . 3 (𝜑 → (𝜓 ↔ ((𝜒𝜃) ∧ 𝜏)))
51, 4mpbiran2d 708 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
6 0funcglem.2 . . 3 (𝜑 → (𝜒𝜂))
7 0funcglem.3 . . 3 (𝜑 → (𝜃𝜁))
86, 7anbi12d 632 . 2 (𝜑 → ((𝜒𝜃) ↔ (𝜂𝜁)))
95, 8bitrd 279 1 (𝜑 → (𝜓 ↔ (𝜂𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  0funcg2  48890
  Copyright terms: Public domain W3C validator