Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcg Structured version   Visualization version   GIF version

Theorem 0funcg 49246
Description: The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcg.c (𝜑𝐶𝑉)
0funcg.b (𝜑 → ∅ = (Base‘𝐶))
0funcg.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
0funcg (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})

Proof of Theorem 0funcg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17777 . 2 Rel (𝐶 Func 𝐷)
2 0ex 5249 . . 3 ∅ ∈ V
32, 2relsnop 5751 . 2 Rel {⟨∅, ∅⟩}
4 0funcg.c . . . 4 (𝜑𝐶𝑉)
5 0funcg.b . . . 4 (𝜑 → ∅ = (Base‘𝐶))
6 0funcg.d . . . 4 (𝜑𝐷 ∈ Cat)
74, 5, 60funcg2 49245 . . 3 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
8 brsnop 5467 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
92, 2, 8mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
107, 9bitr4di 289 . 2 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔𝑓{⟨∅, ∅⟩}𝑔))
111, 3, 10eqbrrdiv 5740 1 (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4577  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Catccat 17578   Func cfunc 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-func 17773
This theorem is referenced by:  0func  49248  initc  49252  0fucterm  49704
  Copyright terms: Public domain W3C validator