Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcg Structured version   Visualization version   GIF version

Theorem 0funcg 48943
Description: The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcg.c (𝜑𝐶𝑉)
0funcg.b (𝜑 → ∅ = (Base‘𝐶))
0funcg.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
0funcg (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})

Proof of Theorem 0funcg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17879 . 2 Rel (𝐶 Func 𝐷)
2 0ex 5287 . . 3 ∅ ∈ V
32, 2relsnop 5795 . 2 Rel {⟨∅, ∅⟩}
4 0funcg.c . . . 4 (𝜑𝐶𝑉)
5 0funcg.b . . . 4 (𝜑 → ∅ = (Base‘𝐶))
6 0funcg.d . . . 4 (𝜑𝐷 ∈ Cat)
74, 5, 60funcg2 48942 . . 3 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
8 brsnop 5507 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
92, 2, 8mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
107, 9bitr4di 289 . 2 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔𝑓{⟨∅, ∅⟩}𝑔))
111, 3, 10eqbrrdiv 5784 1 (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  {csn 4606  cop 4612   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17230  Catccat 17679   Func cfunc 17871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-ixp 8920  df-cat 17683  df-func 17875
This theorem is referenced by:  0func  48945
  Copyright terms: Public domain W3C validator