Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcg Structured version   Visualization version   GIF version

Theorem 0funcg 49047
Description: The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcg.c (𝜑𝐶𝑉)
0funcg.b (𝜑 → ∅ = (Base‘𝐶))
0funcg.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
0funcg (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})

Proof of Theorem 0funcg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17800 . 2 Rel (𝐶 Func 𝐷)
2 0ex 5257 . . 3 ∅ ∈ V
32, 2relsnop 5759 . 2 Rel {⟨∅, ∅⟩}
4 0funcg.c . . . 4 (𝜑𝐶𝑉)
5 0funcg.b . . . 4 (𝜑 → ∅ = (Base‘𝐶))
6 0funcg.d . . . 4 (𝜑𝐷 ∈ Cat)
74, 5, 60funcg2 49046 . . 3 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
8 brsnop 5477 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
92, 2, 8mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
107, 9bitr4di 289 . 2 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔𝑓{⟨∅, ∅⟩}𝑔))
111, 3, 10eqbrrdiv 5748 1 (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  Catccat 17601   Func cfunc 17792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-func 17796
This theorem is referenced by:  0func  49049  initc  49053  0fucterm  49505
  Copyright terms: Public domain W3C validator