Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcg Structured version   Visualization version   GIF version

Theorem 0funcg 49062
Description: The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcg.c (𝜑𝐶𝑉)
0funcg.b (𝜑 → ∅ = (Base‘𝐶))
0funcg.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
0funcg (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})

Proof of Theorem 0funcg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17830 . 2 Rel (𝐶 Func 𝐷)
2 0ex 5264 . . 3 ∅ ∈ V
32, 2relsnop 5770 . 2 Rel {⟨∅, ∅⟩}
4 0funcg.c . . . 4 (𝜑𝐶𝑉)
5 0funcg.b . . . 4 (𝜑 → ∅ = (Base‘𝐶))
6 0funcg.d . . . 4 (𝜑𝐷 ∈ Cat)
74, 5, 60funcg2 49061 . . 3 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
8 brsnop 5484 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
92, 2, 8mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
107, 9bitr4di 289 . 2 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔𝑓{⟨∅, ∅⟩}𝑔))
111, 3, 10eqbrrdiv 5759 1 (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4298  {csn 4591  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Catccat 17631   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-func 17826
This theorem is referenced by:  0func  49064  initc  49068  0fucterm  49512
  Copyright terms: Public domain W3C validator