| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcg | Structured version Visualization version GIF version | ||
| Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| 0funcg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 0funcg.b | ⊢ (𝜑 → ∅ = (Base‘𝐶)) |
| 0funcg.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcg | ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17903 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 0ex 5305 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5813 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | 0funcg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 5 | 0funcg.b | . . . 4 ⊢ (𝜑 → ∅ = (Base‘𝐶)) | |
| 6 | 0funcg.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 7 | 4, 5, 6 | 0funcg2 48890 | . . 3 ⊢ (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 8 | brsnop 5525 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 9 | 2, 2, 8 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 10 | 7, 9 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 11 | 1, 3, 10 | eqbrrdiv 5802 | 1 ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3479 ∅c0 4332 {csn 4624 〈cop 4630 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Catccat 17703 Func cfunc 17895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-map 8864 df-ixp 8934 df-cat 17707 df-func 17899 |
| This theorem is referenced by: 0func 48893 |
| Copyright terms: Public domain | W3C validator |