| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcg | Structured version Visualization version GIF version | ||
| Description: The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| 0funcg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 0funcg.b | ⊢ (𝜑 → ∅ = (Base‘𝐶)) |
| 0funcg.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcg | ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17879 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 0ex 5287 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5795 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | 0funcg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 5 | 0funcg.b | . . . 4 ⊢ (𝜑 → ∅ = (Base‘𝐶)) | |
| 6 | 0funcg.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 7 | 4, 5, 6 | 0funcg2 48942 | . . 3 ⊢ (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 8 | brsnop 5507 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 9 | 2, 2, 8 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 10 | 7, 9 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 11 | 1, 3, 10 | eqbrrdiv 5784 | 1 ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 {csn 4606 〈cop 4612 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Catccat 17679 Func cfunc 17871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-ixp 8920 df-cat 17683 df-func 17875 |
| This theorem is referenced by: 0func 48945 |
| Copyright terms: Public domain | W3C validator |