| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 2 | | eqid 2734 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 3 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 4 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 5 | | eqid 2734 |
. . 3
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 6 | | eqid 2734 |
. . 3
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 7 | | eqid 2734 |
. . 3
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 8 | | eqid 2734 |
. . 3
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 9 | | 0funcg.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 10 | | 0funcg.b |
. . . 4
⊢ (𝜑 → ∅ =
(Base‘𝐶)) |
| 11 | | 0catg 17703 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 12 | 9, 10, 11 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 13 | | 0funcg.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 13 | isfunc 17881 |
. 2
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹:(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝐺 ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st ‘𝑧))(Hom ‘𝐷)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 15 | 10 | feq2d 6702 |
. . 3
⊢ (𝜑 → (𝐹:∅⟶(Base‘𝐷) ↔ 𝐹:(Base‘𝐶)⟶(Base‘𝐷))) |
| 16 | | f0bi 6771 |
. . 3
⊢ (𝐹:∅⟶(Base‘𝐷) ↔ 𝐹 = ∅) |
| 17 | 15, 16 | bitr3di 286 |
. 2
⊢ (𝜑 → (𝐹:(Base‘𝐶)⟶(Base‘𝐷) ↔ 𝐹 = ∅)) |
| 18 | 10 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → (Base‘𝐶) = ∅) |
| 19 | | rzal 4489 |
. . . . 5
⊢
((Base‘𝐶) =
∅ → ∀𝑥
∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 21 | 1 | funcf2lem2 48940 |
. . . . 5
⊢ (𝐺 ∈ X𝑧 ∈
((Base‘𝐶) ×
(Base‘𝐶))(((𝐹‘(1st
‘𝑧))(Hom ‘𝐷)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐶)‘𝑧)) ↔ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 22 | 21 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st ‘𝑧))(Hom ‘𝐷)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐶)‘𝑧)) ↔ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))))) |
| 23 | 20, 22 | mpbiran2d 708 |
. . 3
⊢ (𝜑 → (𝐺 ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st ‘𝑧))(Hom ‘𝐷)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐶)‘𝑧)) ↔ 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 24 | 10 | sqxpeqd 5697 |
. . . . . 6
⊢ (𝜑 → (∅ × ∅)
= ((Base‘𝐶) ×
(Base‘𝐶))) |
| 25 | | 0xp 5764 |
. . . . . 6
⊢ (∅
× ∅) = ∅ |
| 26 | 24, 25 | eqtr3di 2784 |
. . . . 5
⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ∅) |
| 27 | 26 | fneq2d 6642 |
. . . 4
⊢ (𝜑 → (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ 𝐺 Fn ∅)) |
| 28 | | fn0 6679 |
. . . 4
⊢ (𝐺 Fn ∅ ↔ 𝐺 = ∅) |
| 29 | 27, 28 | bitrdi 287 |
. . 3
⊢ (𝜑 → (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ 𝐺 = ∅)) |
| 30 | 23, 29 | bitrd 279 |
. 2
⊢ (𝜑 → (𝐺 ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st ‘𝑧))(Hom ‘𝐷)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐶)‘𝑧)) ↔ 𝐺 = ∅)) |
| 31 | | rzal 4489 |
. . 3
⊢
((Base‘𝐶) =
∅ → ∀𝑥
∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
| 32 | 18, 31 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
| 33 | 14, 17, 30, 32 | 0funcglem 48941 |
1
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅))) |