Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcg2 Structured version   Visualization version   GIF version

Theorem 0funcg2 49089
Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
0funcg.c (𝜑𝐶𝑉)
0funcg.b (𝜑 → ∅ = (Base‘𝐶))
0funcg.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
0funcg2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅)))

Proof of Theorem 0funcg2
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2729 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2729 . . 3 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2729 . . 3 (comp‘𝐶) = (comp‘𝐶)
8 eqid 2729 . . 3 (comp‘𝐷) = (comp‘𝐷)
9 0funcg.c . . . 4 (𝜑𝐶𝑉)
10 0funcg.b . . . 4 (𝜑 → ∅ = (Base‘𝐶))
11 0catg 17613 . . . 4 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐶 ∈ Cat)
13 0funcg.d . . 3 (𝜑𝐷 ∈ Cat)
141, 2, 3, 4, 5, 6, 7, 8, 12, 13isfunc 17790 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹:(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝐺X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
1510feq2d 6640 . . 3 (𝜑 → (𝐹:∅⟶(Base‘𝐷) ↔ 𝐹:(Base‘𝐶)⟶(Base‘𝐷)))
16 f0bi 6711 . . 3 (𝐹:∅⟶(Base‘𝐷) ↔ 𝐹 = ∅)
1715, 16bitr3di 286 . 2 (𝜑 → (𝐹:(Base‘𝐶)⟶(Base‘𝐷) ↔ 𝐹 = ∅))
1810eqcomd 2735 . . . . 5 (𝜑 → (Base‘𝐶) = ∅)
19 rzal 4462 . . . . 5 ((Base‘𝐶) = ∅ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
2018, 19syl 17 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
211funcf2lem2 49087 . . . . 5 (𝐺X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
2221a1i 11 . . . 4 (𝜑 → (𝐺X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))))
2320, 22mpbiran2d 708 . . 3 (𝜑 → (𝐺X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶))))
2410sqxpeqd 5655 . . . . . 6 (𝜑 → (∅ × ∅) = ((Base‘𝐶) × (Base‘𝐶)))
25 0xp 5722 . . . . . 6 (∅ × ∅) = ∅
2624, 25eqtr3di 2779 . . . . 5 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
2726fneq2d 6580 . . . 4 (𝜑 → (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ 𝐺 Fn ∅))
28 fn0 6617 . . . 4 (𝐺 Fn ∅ ↔ 𝐺 = ∅)
2927, 28bitrdi 287 . . 3 (𝜑 → (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ 𝐺 = ∅))
3023, 29bitrd 279 . 2 (𝜑 → (𝐺X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ 𝐺 = ∅))
31 rzal 4462 . . 3 ((Base‘𝐶) = ∅ → ∀𝑥 ∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
3218, 31syl 17 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑚 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
3314, 17, 30, 320funcglem 49088 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4286  cop 4585   class class class wbr 5095   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  m cmap 8760  Xcixp 8831  Basecbs 17139  Hom chom 17191  compcco 17192  Catccat 17589  Idccid 17590   Func cfunc 17780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17593  df-func 17784
This theorem is referenced by:  0funcg  49090  termolmd  49675
  Copyright terms: Public domain W3C validator