| Metamath
Proof Explorer Theorem List (p. 491 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30862) |
(30863-32385) |
(32386-49800) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | asclelbasALT 49001 | Alternate proof of asclelbas 49000. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) | ||
| Theorem | asclcntr 49002 | The algebra scalar lifting function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝑀 = (mulGrp‘𝑊) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) | ||
| Theorem | asclcom 49003 |
Scalars are commutative after being lifted.
However, the scalars themselves are not necessarily commutative if the algebra is not a faithful module. For example, Let 𝐹 be the 2 by 2 upper triangular matrix algebra over a commutative ring 𝑊. It is provable that 𝐹 is in general non-commutative. Define scalar multiplication 𝐶 · 𝑋 as multipying the top-left entry, which is a "vector" element of 𝑊, of the "scalar" 𝐶, which is now an upper triangular matrix, with the "vector" 𝑋 ∈ (Base‘𝑊). Equivalently, the algebra scalar lifting function is not necessarily injective unless the algebra is faithful. Therefore, all "scalar injection" was renamed. Alternate proof involves assa2ass 21770, assa2ass2 21771, and asclval 21787, by setting 𝑋 and 𝑌 the multiplicative identity of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ∗ = (.r‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = (𝐴‘(𝐷 ∗ 𝐶))) | ||
| Theorem | homf0 49004 | The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) | ||
| Theorem | catprslem 49005* | Lemma for catprs 49006. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
| Theorem | catprs 49006* | A preorder can be extracted from a category. See catprs2 49007 for more details. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | catprs2 49007* | A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 49008 and catprsc2 49009 for constructions satisfying the hypothesis "catprs.1". See catprs 49006 for a more primitive version. See prsthinc 49459 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
| Theorem | catprsc 49008* | A construction of the preorder induced by a category. See catprs2 49007 for details. See also catprsc2 49009 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
| Theorem | catprsc2 49009* | An alternate construction of the preorder induced by a category. See catprs2 49007 for details. See also catprsc 49008 for a different construction. The two constructions are different because df-cat 17574 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
| Theorem | endmndlem 49010 | A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49573 for converting a monoid to a category. Lemma for bj-endmnd 37302. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) & ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mnd) | ||
| Theorem | oppccatb 49011 | An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝑂 ∈ Cat)) | ||
| Theorem | oppcmndclem 49012 | Lemma for oppcmndc 49014. Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc 49013 are in ¬ 𝑥 = 𝑦 form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = {𝐴}) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) | ||
| Theorem | oppcendc 49013* | The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppcmndc 49014 | The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐵 = {𝑋}) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | idmon 49015 | An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) | ||
| Theorem | idepi 49016 | An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) | ||
| Theorem | sectrcl 49017 | Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | sectrcl2 49018 | Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | invrcl 49019 | Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | invrcl2 49020 | Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | isinv2 49021 | The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | isisod 49022 | The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) & ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) & ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | ||
| Theorem | upeu2lem 49023* | Lemma for upeu2 49167. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋⟶𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑍)) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
| Theorem | sectfn 49024 | The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | invfn 49025 | The function value of the function returning the inverses of a category is a function over the Cartesian square of the base set of the category. Simplifies isofn 17682 (see isofnALT 49026). (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | isofnALT 49026 | The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | isofval2 49027* | Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) | ||
| Theorem | isorcl 49028 | Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | isorcl2 49029 | Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | isoval2 49030 | The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) | ||
| Theorem | sectpropdlem 49031 | Lemma for sectpropd 49032. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐷)) | ||
| Theorem | sectpropd 49032 | Two structures with the same base, hom-sets and composition operation have the same sections. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Sect‘𝐶) = (Sect‘𝐷)) | ||
| Theorem | invpropdlem 49033 | Lemma for invpropd 49034. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐷)) | ||
| Theorem | invpropd 49034 | Two structures with the same base, hom-sets and composition operation have the same inverses. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Inv‘𝐶) = (Inv‘𝐷)) | ||
| Theorem | isopropdlem 49035 | Lemma for isopropd 49036. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷)) | ||
| Theorem | isopropd 49036 | Two structures with the same base, hom-sets and composition operation have the same isomorphisms. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Iso‘𝐶) = (Iso‘𝐷)) | ||
| Theorem | cicfn 49037 | ≃𝑐 is a function on Cat. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ ≃𝑐 Fn Cat | ||
| Theorem | cicrcl2 49038 | Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) | ||
| Theorem | oppccic 49039 | Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) ⇒ ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) | ||
| Theorem | relcic 49040 | The set of isomorphic objects is a relation. Simplifies cicer 17713 (see cicerALT 49041). (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | ||
| Theorem | cicerALT 49041 | Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) | ||
| Theorem | cic1st2nd 49042 | Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝑃 ∈ ( ≃𝑐 ‘𝐶) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) | ||
| Theorem | cic1st2ndbr 49043 | Rewrite the predicate of isomorphic objects with separated parts. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝑃 ∈ ( ≃𝑐 ‘𝐶) → (1st ‘𝑃)( ≃𝑐 ‘𝐶)(2nd ‘𝑃)) | ||
| Theorem | cicpropdlem 49044 | Lemma for cicpropd 49045. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐 ‘𝐶)) → 𝑃 ∈ ( ≃𝑐 ‘𝐷)) | ||
| Theorem | cicpropd 49045 | Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ( ≃𝑐 ‘𝐷)) | ||
| Theorem | oppccicb 49046 | Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅( ≃𝑐 ‘𝑂)𝑆) | ||
| Theorem | oppcciceq 49047 | The opposite category has the same isomorphic objects as the original category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ ( ≃𝑐 ‘𝐶) = ( ≃𝑐 ‘𝑂) | ||
| Theorem | dmdm 49048 | The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) | ||
| Theorem | iinfssclem1 49049* | Lemma for iinfssc 49052. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) | ||
| Theorem | iinfssclem2 49050* | Lemma for iinfssc 49052. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → 𝐾 Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) | ||
| Theorem | iinfssclem3 49051* | Lemma for iinfssc 49052. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌)) | ||
| Theorem | iinfssc 49052* | Indexed intersection of subcategories is a subcategory (the category-agnostic version). (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) ⇒ ⊢ (𝜑 → 𝐾 ⊆cat 𝐽) | ||
| Theorem | iinfsubc 49053* | Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐶)) | ||
| Theorem | iinfprg 49054* | Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) = (𝑥 ∈ ∩ 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 ↦ ∩ 𝑦 ∈ {𝐴, 𝐵} (𝑦‘𝑥))) | ||
| Theorem | infsubc 49055* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) ∈ (Subcat‘𝐶)) | ||
| Theorem | infsubc2 49056* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶)) | ||
| Theorem | infsubc2d 49057* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) & ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) | ||
| Theorem | discsubclem 49058* | Lemma for discsubc 49059. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) ⇒ ⊢ 𝐽 Fn (𝑆 × 𝑆) | ||
| Theorem | discsubc 49059* | A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | ||
| Theorem | iinfconstbaslem 49060* | Lemma for iinfconstbas 49061. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) ⇒ ⊢ (𝜑 → 𝐽 ∈ 𝐴) | ||
| Theorem | iinfconstbas 49061* | The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) ⇒ ⊢ (𝜑 → 𝐽 = (𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 (ℎ‘𝑧))) | ||
| Theorem | nelsubclem 49062* | Lemma for nelsubc 49063. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ 𝐻 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)))) | ||
| Theorem | nelsubc 49063* | An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) | ||
| Theorem | nelsubc2 49064 | An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) | ||
| Theorem | nelsubc3lem 49065* | Lemma for nelsubc3 49066. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 ∈ Cat & ⊢ 𝐽 ∈ V & ⊢ 𝑆 ∈ V & ⊢ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) ⇒ ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) | ||
| Theorem | nelsubc3 49066* |
Remark 4.2(2) of [Adamek] p. 48. There exists
a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17719 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17756). To construct such a category, see setc1onsubc 49597 and cnelsubc 49599. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) | ||
| Theorem | ssccatid 49067* | A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49599). (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) & ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ (𝑦𝐽𝑦)) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦 ∈ 𝑆 ↦ 1 ))) | ||
| Theorem | resccatlem 49068* | Lemma for resccat 49069. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑆 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐸) & ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) | ||
| Theorem | resccat 49069* | A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥 ∈ 𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑆 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐸) & ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) | ||
| Theorem | reldmfunc 49070 | The domain of Func is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| ⊢ Rel dom Func | ||
| Theorem | func1st2nd 49071 | Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | ||
| Theorem | func1st 49072 | Extract the first member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | ||
| Theorem | func2nd 49073 | Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) | ||
| Theorem | funcrcl2 49074 | Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐷 ∈ Cat) | ||
| Theorem | funcrcl3 49075 | Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐸 ∈ Cat) | ||
| Theorem | funcf2lem 49076* | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | ||
| Theorem | funcf2lem2 49077* | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐵 = (𝐸‘𝐶) ⇒ ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | ||
| Theorem | 0funcglem 49078 | Lemma for 0funcg 49080. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) & ⊢ (𝜑 → (𝜒 ↔ 𝜂)) & ⊢ (𝜑 → (𝜃 ↔ 𝜁)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) | ||
| Theorem | 0funcg2 49079 | The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅))) | ||
| Theorem | 0funcg 49080 | The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) | ||
| Theorem | 0funclem 49081 | Lemma for 0funcALT 49083. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) & ⊢ (𝜒 ↔ 𝜂) & ⊢ (𝜃 ↔ 𝜁) & ⊢ 𝜏 ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) | ||
| Theorem | 0func 49082 | The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof shortened by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) | ||
| Theorem | 0funcALT 49083 | Alternate proof of 0func 49082. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) | ||
| Theorem | func0g 49084 | The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐵 = ∅) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | func0g2 49085 | The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐵 = ∅) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | initc 49086* | Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑)) | ||
| Theorem | cofu1st2nd 49087 | Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) | ||
| Theorem | rescofuf 49088 | The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | ||
| Theorem | cofu1a 49089 | Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = (𝑀‘𝑋)) | ||
| Theorem | cofu2a 49090 | Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅)) | ||
| Theorem | cofucla 49091 | The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) | ||
| Theorem | funchomf 49092 | Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Func 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | ||
| Theorem | idfurcl 49093 | Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | ||
| Theorem | idfu1stf1o 49094 | The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) | ||
| Theorem | idfu1stalem 49095 | Lemma for idfu1sta 49096. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | idfu1sta 49096 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) | ||
| Theorem | idfu1a 49097 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐼)‘𝑋) = 𝑋) | ||
| Theorem | idfu2nda 49098 | Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) | ||
| Theorem | imasubclem1 49099* | Lemma for imasubc 49146. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) | ||
| Theorem | imasubclem2 49100* | Lemma for imasubc 49146. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝐾 = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷)) ⇒ ⊢ (𝜑 → 𝐾 Fn (𝑋 × 𝑌)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |