| Metamath
Proof Explorer Theorem List (p. 491 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30865) |
(30866-32388) |
(32389-49332) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fuco111 49001 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) | ||
| Theorem | fuco111x 49002 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = (𝐾‘(𝐹‘𝑋))) | ||
| Theorem | fuco112x 49003 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) | ||
| Theorem | fuco112xa 49004 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) | ||
| Theorem | fuco11id 49005 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) ⇒ ⊢ (𝜑 → (𝐼‘(𝑂‘𝑈)) = ( 1 ∘ (𝐾 ∘ 𝐹))) | ||
| Theorem | fuco11idx 49006 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((𝐼‘(𝑂‘𝑈))‘𝑋) = ( 1 ‘(𝐾‘(𝐹‘𝑋)))) | ||
| Theorem | fuco21 49007* | The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) & ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) | ||
| Theorem | fuco11b 49008 | The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) | ||
| Theorem | fuco11bALT 49009 | Alternate proof of fuco11b 49008. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) | ||
| Theorem | fuco22 49010* | The morphism part of the functor composition bifunctor. See also fuco22a 49021. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) | ||
| Theorem | fucofn22 49011 | The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶)) | ||
| Theorem | fuco23 49012 | The morphism part of the functor composition bifunctor. See also fuco23a 49023. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
| Theorem | fuco22natlem1 49013 | Lemma for fuco22nat 49017. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
| Theorem | fuco22natlem2 49014 | Lemma for fuco22nat 49017. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 49013. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | ||
| Theorem | fuco22natlem3 49015 | Combine fuco22natlem2 49014 with fuco23 49012. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋))) | ||
| Theorem | fuco22natlem 49016 | The composed natural transformation is a natural transformation. Use fuco22nat 49017 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fuco22nat 49017 | The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fucof21 49018 | The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fucoid 49019 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49020. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
| Theorem | fucoid2 49020 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 49019. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
| Theorem | fuco22a 49021* | The morphism part of the functor composition bifunctor. See also fuco22 49010. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st ‘𝑀)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐹)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑀)‘𝑥))〉(comp‘𝐸)((1st ‘𝑅)‘((1st ‘𝑀)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝐾)((1st ‘𝑀)‘𝑥))‘(𝐴‘𝑥))))) | ||
| Theorem | fuco23alem 49022 | The naturality property (nati 17974) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ · = (comp‘𝐸) ⇒ ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) | ||
| Theorem | fuco23a 49023 | The morphism part of the functor composition bifunctor. An alternate definition of ∘F. See also fuco23 49012. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋)))) | ||
| Theorem | fucocolem1 49024 | Lemma for fucoco 49028. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑃 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑄 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))) & ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))(Hom ‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))) ⇒ ⊢ (𝜑 → (((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))𝐴)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))(𝐵(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋)))) = ((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))((𝐴(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))𝐵)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋))))) | ||
| Theorem | fucocolem2 49025* | Lemma for fucoco 49028. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(𝑅‘((1st ‘𝑁)‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘((𝑉‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐿)‘𝑥)〉 ∗ ((1st ‘𝑁)‘𝑥))(𝑆‘𝑥)))))) | ||
| Theorem | fucocolem3 49026* | Lemma for fucoco 49028. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(((𝑅‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
| Theorem | fucocolem4 49027* | Lemma for fucoco 49028. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) ⇒ ⊢ (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐾)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((𝑅‘((1st ‘𝐿)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
| Theorem | fucoco 49028 | Composition in the source category is mapped to composition in the target. See also fucoco2 49029. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
| Theorem | fucoco2 49029 | Composition in the source category is mapped to composition in the target. See also fucoco 49028. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ · = (comp‘𝑇) & ⊢ ∙ = (comp‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
| Theorem | fucofunc 49030 |
The functor composition bifunctor is a functor. See also fucofunca 49031.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49098), for example, (SetCat‘1o) (the trivial category, setc1oterm 49115), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 49012. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 48988 up to fuco23 49012, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 48982 for some insights. 2. fuco22nat 49017, fucoid 49019, and fucoco 49028 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) | ||
| Theorem | fucofunca 49031 | The functor composition bifunctor is a functor. See also fucofunc 49030. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (𝑇 Func 𝑄)) | ||
| Theorem | fucolid 49032* | Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐶 Nat 𝐷)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐼‘𝐹)(〈𝐹, 𝐺〉𝑃〈𝐹, 𝐻〉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐻)‘𝑥))‘(𝐴‘𝑥)))) | ||
| Theorem | fucorid 49033* | Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor, in maps-to notation. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) | ||
| Theorem | fucorid2 49034 | Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) | ||
| Theorem | postcofval 49035* | Value of the post-composition functor as a curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) | ||
| Theorem | postcofcl 49036 | The post-composition functor as a curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑄 Func 𝑆)) | ||
| Theorem | precofvallem 49037 | Lemma for precofval 49038 to enable catlid 17697 or catrid 17698. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) | ||
| Theorem | precofval 49038* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) | ||
| Theorem | precofvalALT 49039* | Alternate proof of precofval 49038. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) | ||
| Theorem | precofval2 49040* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) | ||
| Theorem | precofcl 49041 | The pre-composition functor as a transposed curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑅 Func 𝑆)) | ||
| Theorem | precofval3 49042* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) & ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) & ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) ⇒ ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) | ||
| Theorem | precoffunc 49043* | The pre-composition functor, expressed explicitly, is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) & ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾(𝑅 Func 𝑆)𝐿) | ||
| Syntax | cthinc 49044 | Extend class notation with the class of thin categories. |
| class ThinCat | ||
| Definition | df-thinc 49045* | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} | ||
| Theorem | isthinc 49046* | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | ||
| Theorem | isthinc2 49047* | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ≼ 1o)) | ||
| Theorem | isthinc3 49048* | A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔)) | ||
| Theorem | thincc 49049 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
| Theorem | thinccd 49050 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | thincssc 49051 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat ⊆ Cat | ||
| Theorem | isthincd2lem1 49052* | Lemma for isthincd2 49064 and thincmo2 49053. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thincmo2 49053 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thinchom 49054 | A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) | ||
| Theorem | thincmo 49055* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmoALT 49056* | Alternate proof of thincmo 49055. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmod 49057* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincn0eu 49058* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | thincid 49059 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | thincmon 49060 | In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 49198. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | thincepi 49061 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49199. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | isthincd2lem2 49062* | Lemma for isthincd2 49064. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | isthincd 49063* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | isthincd2 49064* | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
| Theorem | oppcthin 49065 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
| Theorem | oppcthinco 49066 | If the opposite category of a thin category has the same base and hom-sets as the original category, then it has the same composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendc 49067* | The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets (oppcendc 48874) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendcALT 49068* | Alternate proof of oppcthinendc 49067. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | thincpropd 49069 | Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) | ||
| Theorem | subthinc 49070 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
| Theorem | functhinclem1 49071* | Lemma for functhinc 49075. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhinclem2 49072* | Lemma for functhinc 49075. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
| Theorem | functhinclem3 49073* | Lemma for functhinc 49075. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
| Theorem | functhinclem4 49074* | Lemma for functhinc 49075. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
| Theorem | functhinc 49075* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 48869), and can be obtained from funcf2 17884, f002 48721, and ralrimivva 3189. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhincfun 49076 | A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → Fun (𝐶 Func 𝐷)) | ||
| Theorem | fullthinc 49077* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
| Theorem | fullthinc2 49078 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
| Theorem | thincfth 49079 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
| Theorem | thincciso 49080* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso.u" is redundant thanks to elbasfv 17235. (Contributed by Zhi Wang, 16-Oct-2024.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
| Theorem | thinccisod 49081* | Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | thincciso2 49082 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17235. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑋 ∈ ThinCat) | ||
| Theorem | thincciso3 49083 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17235. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑌 ∈ ThinCat) | ||
| Theorem | thincciso4 49084 | Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17235. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) ⇒ ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) | ||
| Theorem | 0thincg 49085 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
| Theorem | 0thinc 49086 | The empty category (see 0cat 17703) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ∅ ∈ ThinCat | ||
| Theorem | indthinc 49087* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 49089, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | indthincALT 49088* | An alternate proof of indthinc 49087 assuming more axioms including ax-pow 5345 and ax-un 7737. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | prsthinc 49089* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 48868 and catprs2 48869 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | setcthin 49090* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | setc2othin 49091 | The category (SetCat‘2o) is thin. A special case of setcthin 49090. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (SetCat‘2o) ∈ ThinCat | ||
| Theorem | thincsect 49092 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
| Theorem | thincsect2 49093 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | thincinv 49094 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
| Theorem | thinciso 49095 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
| Theorem | thinccic 49096 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
| Syntax | ctermc 49097 | Extend class notation with the class of terminal categories. |
| class TermCat | ||
| Definition | df-termc 49098* |
Definition of the proper class (termcnex 49181) of terminal categories, or
final categories, i.e., categories with exactly one object and exactly
one morphism, the latter of which is an identity morphism (termcid 49110).
These are exactly the thin categories with a singleton base set.
Example 3.3(4.c) of [Adamek] p. 24.
As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49128). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49131). See also dftermc3 49142 where TermCat is defined as categories with exactly one disjointified arrow. Unlike https://ncatlab.org/nlab/show/terminal+category 49142, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49115. Followed directly from the definition, terminal categories are thin (termcthin 49102). The opposite category of a terminal category is "almost" itself (oppctermco 49118). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49151). The dual concept is the initial category, or the empty category. See 0catg 17702, 0thincg 49085, and 0funcg 48887. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | ||
| Theorem | istermc 49099* | The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) | ||
| Theorem | istermc2 49100* | The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |