HomeHome Metamath Proof Explorer
Theorem List (p. 491 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30897)
  Hilbert Space Explorer  Hilbert Space Explorer
(30898-32420)
  Users' Mathboxes  Users' Mathboxes
(32421-49787)
 

Theorem List for Metamath Proof Explorer - 49001-49100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremoppcmndc 49001 The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐵 = {𝑋})       (𝜑 → (Homf𝐶) = (Homf𝑂))
 
21.49.15.3  Monomorphisms and epimorphisms
 
Theoremidmon 49002 An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝑀 = (Mono‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
 
Theoremidepi 49003 An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝐸 = (Epi‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝐸𝑋))
 
21.49.15.4  Sections, inverses, isomorphisms
 
Theoremsectrcl 49004 Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
𝑆 = (Sect‘𝐶)    &   (𝜑𝐹(𝑋𝑆𝑌)𝐺)       (𝜑𝐶 ∈ Cat)
 
Theoremsectrcl2 49005 Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
𝑆 = (Sect‘𝐶)    &   (𝜑𝐹(𝑋𝑆𝑌)𝐺)    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑋𝐵𝑌𝐵))
 
Theoreminvrcl 49006 Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
𝑁 = (Inv‘𝐶)    &   (𝜑𝐹(𝑋𝑁𝑌)𝐺)       (𝜑𝐶 ∈ Cat)
 
Theoreminvrcl2 49007 Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
𝑁 = (Inv‘𝐶)    &   (𝜑𝐹(𝑋𝑁𝑌)𝐺)    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑋𝐵𝑌𝐵))
 
Theoremisinv2 49008 The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.)
𝑁 = (Inv‘𝐶)    &   𝑆 = (Sect‘𝐶)       (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
 
Theoremisisod 49009 The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐼 = (Iso‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑋))    &   (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))    &   (𝜑 → (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))       (𝜑𝐹 ∈ (𝑋𝐼𝑌))
 
Theoremupeu2lem 49010* Lemma for upeu2 49154. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑍))       (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
 
Theoremsectfn 49011 The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
 
Theoreminvfn 49012 The function value of the function returning the inverses of a category is a function over the Cartesian square of the base set of the category. Simplifies isofn 17717 (see isofnALT 49013). (Contributed by Zhi Wang, 27-Oct-2025.)
(𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
 
TheoremisofnALT 49013 The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
 
Theoremisofval2 49014* Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐼 = (Iso‘𝐶)       (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
 
Theoremisorcl 49015 Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))       (𝜑𝐶 ∈ Cat)
 
Theoremisorcl2 49016 Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑋𝐵𝑌𝐵))
 
Theoremisoval2 49017 The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.)
𝑁 = (Inv‘𝐶)    &   𝐼 = (Iso‘𝐶)       (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)
 
Theoremsectpropdlem 49018 Lemma for sectpropd 49019. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐷))
 
Theoremsectpropd 49019 Two structures with the same base, hom-sets and composition operation have the same sections. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       (𝜑 → (Sect‘𝐶) = (Sect‘𝐷))
 
Theoreminvpropdlem 49020 Lemma for invpropd 49021. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐷))
 
Theoreminvpropd 49021 Two structures with the same base, hom-sets and composition operation have the same inverses. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       (𝜑 → (Inv‘𝐶) = (Inv‘𝐷))
 
Theoremisopropdlem 49022 Lemma for isopropd 49023. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷))
 
Theoremisopropd 49023 Two structures with the same base, hom-sets and composition operation have the same isomorphisms. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       (𝜑 → (Iso‘𝐶) = (Iso‘𝐷))
 
21.49.15.5  Isomorphic objects
 
Theoremcicfn 49024 𝑐 is a function on Cat. (Contributed by Zhi Wang, 26-Oct-2025.)
𝑐 Fn Cat
 
Theoremcicrcl2 49025 Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.)
(𝑅( ≃𝑐𝐶)𝑆𝐶 ∈ Cat)
 
Theoremoppccic 49026 Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝑅( ≃𝑐𝐶)𝑆)       (𝜑𝑅( ≃𝑐𝑂)𝑆)
 
Theoremrelcic 49027 The set of isomorphic objects is a relation. Simplifies cicer 17748 (see cicerALT 49028). (Contributed by Zhi Wang, 27-Oct-2025.)
(𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
 
TheoremcicerALT 49028 Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
 
Theoremcic1st2nd 49029 Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
 
Theoremcic1st2ndbr 49030 Rewrite the predicate of isomorphic objects with separated parts. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
 
Theoremcicpropdlem 49031 Lemma for cicpropd 49032. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))
 
Theoremcicpropd 49032 Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       (𝜑 → ( ≃𝑐𝐶) = ( ≃𝑐𝐷))
 
Theoremoppccicb 49033 Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025.)
𝑂 = (oppCat‘𝐶)       (𝑅( ≃𝑐𝐶)𝑆𝑅( ≃𝑐𝑂)𝑆)
 
Theoremoppcciceq 49034 The opposite category has the same isomorphic objects as the original category. (Contributed by Zhi Wang, 27-Oct-2025.)
𝑂 = (oppCat‘𝐶)       ( ≃𝑐𝐶) = ( ≃𝑐𝑂)
 
21.49.15.6  Subcategories
 
Theoremdmdm 49035 The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.)
(𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴)
 
Theoremiinfssclem1 49036* Lemma for iinfssc 49039. (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐻cat 𝐽)    &   (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))    &   ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)    &   𝑥𝜑       (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
 
Theoremiinfssclem2 49037* Lemma for iinfssc 49039. (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐻cat 𝐽)    &   (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))    &   ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)    &   𝑥𝜑       (𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
 
Theoremiinfssclem3 49038* Lemma for iinfssc 49039. (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐻cat 𝐽)    &   (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))    &   ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)    &   𝑥𝜑    &   (𝜑𝑋 𝑥𝐴 𝑆)    &   (𝜑𝑌 𝑥𝐴 𝑆)       (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
 
Theoremiinfssc 49039* Indexed intersection of subcategories is a subcategory (the category-agnostic version). (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐻cat 𝐽)    &   (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))       (𝜑𝐾cat 𝐽)
 
Theoremiinfsubc 49040* Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))    &   (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))       (𝜑𝐾 ∈ (Subcat‘𝐶))
 
Theoremiinfprg 49041* Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.)
((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
 
Theoreminfsubc 49042* The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) ∈ (Subcat‘𝐶))
 
Theoreminfsubc2 49043* The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
 
Theoreminfsubc2d 49044* The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
(𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝐽 Fn (𝑇 × 𝑇))    &   (𝜑𝐻 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 ∈ (Subcat‘𝐶))       (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
 
Theoremdiscsubclem 49045* Lemma for discsubc 49046. (Contributed by Zhi Wang, 1-Nov-2025.)
𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))       𝐽 Fn (𝑆 × 𝑆)
 
Theoremdiscsubc 49046* A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.)
𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))    &   𝐵 = (Base‘𝐶)    &   𝐼 = (Id‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐽 ∈ (Subcat‘𝐶))
 
Theoremiinfconstbaslem 49047* Lemma for iinfconstbas 49048. (Contributed by Zhi Wang, 1-Nov-2025.)
𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))    &   𝐵 = (Base‘𝐶)    &   𝐼 = (Id‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))       (𝜑𝐽𝐴)
 
Theoremiinfconstbas 49048* The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))    &   𝐵 = (Base‘𝐶)    &   𝐼 = (Id‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))       (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
 
Theoremnelsubclem 49049* Lemma for nelsubc 49050. (Contributed by Zhi Wang, 5-Nov-2025.)
𝐵 = (Base‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝑆 ≠ ∅)    &   (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))    &   𝐻 = (Homf𝐶)       (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
 
Theoremnelsubc 49050* An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025.)
𝐵 = (Base‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝑆 ≠ ∅)    &   (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))    &   𝐻 = (Homf𝐶)    &    1 = (Id‘𝐶)    &    · = (comp‘𝐶)       (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
 
Theoremnelsubc2 49051 An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.)
𝐵 = (Base‘𝐶)    &   (𝜑𝑆𝐵)    &   (𝜑𝑆 ≠ ∅)    &   (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))    &   (𝜑𝐶 ∈ Cat)       (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶))
 
Theoremnelsubc3lem 49052* Lemma for nelsubc3 49053. (Contributed by Zhi Wang, 5-Nov-2025.)
𝐶 ∈ Cat    &   𝐽 ∈ V    &   𝑆 ∈ V    &   (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))       𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
 
Theoremnelsubc3 49053* Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all conditions for a subcategory but the existence of identity morphisms. Therefore such condition in df-subc 17754 is necessary.

Note that this theorem cheated a little bit because (𝐶cat 𝐽) is not a category. In fact (𝐶cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17791). To construct such a category, see setc1onsubc 49584 and cnelsubc 49586. (Contributed by Zhi Wang, 5-Nov-2025.)

𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
 
Theoremssccatid 49054* A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49586). (Contributed by Zhi Wang, 6-Nov-2025.)
𝐻 = (Homf𝐶)    &   𝐷 = (𝐶cat 𝐽)    &    · = (comp‘𝐶)    &   (𝜑𝐽cat 𝐻)    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &   (𝜑𝐶 ∈ Cat)    &   ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))    &   ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)    &   ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))       (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
 
Theoremresccatlem 49055* Lemma for resccat 49056. (Contributed by Zhi Wang, 6-Nov-2025.)
𝐷 = (𝐶cat 𝐽)    &   𝐵 = (Base‘𝐶)    &   𝑆 = (Base‘𝐸)    &   𝐽 = (Homf𝐸)    &    · = (comp‘𝐶)    &    = (comp‘𝐸)    &   (((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))    &   (𝜑𝐸𝑉)    &   (𝜑𝑆𝐵)    &   (𝜑𝐶𝑈)       (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
 
Theoremresccat 49056* A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.)
𝐷 = (𝐶cat 𝐽)    &   𝐵 = (Base‘𝐶)    &   𝑆 = (Base‘𝐸)    &   𝐽 = (Homf𝐸)    &    · = (comp‘𝐶)    &    = (comp‘𝐸)    &   (((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))    &   (𝜑𝐸𝑉)    &   (𝜑𝑆𝐵)       (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
 
21.49.15.7  Functors
 
Theoremreldmfunc 49057 The domain of Func is a relation. (Contributed by Zhi Wang, 12-Nov-2025.)
Rel dom Func
 
Theoremfunc1st2nd 49058 Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
 
Theoremfunc1st 49059 Extract the first member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.)
(𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
 
Theoremfunc2nd 49060 Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.)
(𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
 
Theoremfuncrcl2 49061 Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.)
(𝜑𝐹(𝐷 Func 𝐸)𝐺)       (𝜑𝐷 ∈ Cat)
 
Theoremfuncrcl3 49062 Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.)
(𝜑𝐹(𝐷 Func 𝐸)𝐺)       (𝜑𝐸 ∈ Cat)
 
Theoremfuncf2lem 49063* A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.)
(𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theoremfuncf2lem2 49064* A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025.)
𝐵 = (𝐸𝐶)       (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theorem0funcglem 49065 Lemma for 0funcg 49067. (Contributed by Zhi Wang, 17-Oct-2025.)
(𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))    &   (𝜑 → (𝜒𝜂))    &   (𝜑 → (𝜃𝜁))    &   (𝜑𝜏)       (𝜑 → (𝜓 ↔ (𝜂𝜁)))
 
Theorem0funcg2 49066 The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025.)
(𝜑𝐶𝑉)    &   (𝜑 → ∅ = (Base‘𝐶))    &   (𝜑𝐷 ∈ Cat)       (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅)))
 
Theorem0funcg 49067 The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.)
(𝜑𝐶𝑉)    &   (𝜑 → ∅ = (Base‘𝐶))    &   (𝜑𝐷 ∈ Cat)       (𝜑 → (𝐶 Func 𝐷) = {⟨∅, ∅⟩})
 
Theorem0funclem 49068 Lemma for 0funcALT 49070. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))    &   (𝜒𝜂)    &   (𝜃𝜁)    &   𝜏       (𝜑 → (𝜓 ↔ (𝜂𝜁)))
 
Theorem0func 49069 The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof shortened by Zhi Wang, 17-Oct-2025.)
(𝜑𝐶 ∈ Cat)       (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
 
Theorem0funcALT 49070 Alternate proof of 0func 49069. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 ∈ Cat)       (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
 
Theoremfunc0g 49071 The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐵 = ∅)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑𝐴 = ∅)
 
Theoremfunc0g2 49072 The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐵 = ∅)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑𝐴 = ∅)
 
Theoreminitc 49073* Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.)
((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
 
Theoremcofu1st2nd 49074 Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
 
Theoremrescofuf 49075 The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.)
( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
 
Theoremcofu1a 49076 Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ⟨𝑀, 𝑁⟩)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐾‘(𝐹𝑋)) = (𝑀𝑋))
 
Theoremcofu2a 49077 Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ⟨𝑀, 𝑁⟩)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑅 ∈ (𝑋𝐻𝑌))       (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅))
 
Theoremcofucla 49078 The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Nov-2025.)
(𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)       (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
 
Theoremfunchomf 49079 Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025.)
(𝜑𝐹(𝐴 Func 𝐶)𝐺)    &   (𝜑𝐹(𝐵 Func 𝐷)𝐺)       (𝜑 → (Homf𝐴) = (Homf𝐵))
 
Theoremidfurcl 49080 Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
 
Theoremidfu1stf1o 49081 The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)       (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)
 
Theoremidfu1stalem 49082 Lemma for idfu1sta 49083. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐵 = (Base‘𝐷))       (𝜑𝐵 = (Base‘𝐶))
 
Theoremidfu1sta 49083 Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐵 = (Base‘𝐷))       (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
 
Theoremidfu1a 49084 Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐵 = (Base‘𝐷))    &   (𝜑𝑋𝐵)       (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
 
Theoremidfu2nda 49085 Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐵 = (Base‘𝐷))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (𝑋(Hom ‘𝐷)𝑌))       (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ 𝐻))
 
Theoremimasubclem1 49086* Lemma for imasubc 49133. (Contributed by Zhi Wang, 6-Nov-2025.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)       (𝜑 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷) ∈ V)
 
Theoremimasubclem2 49087* Lemma for imasubc 49133. (Contributed by Zhi Wang, 7-Nov-2025.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   𝐾 = (𝑦𝑋, 𝑧𝑌 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷))       (𝜑𝐾 Fn (𝑋 × 𝑌))
 
Theoremimasubclem3 49088* Lemma for imasubc 49133. (Contributed by Zhi Wang, 7-Nov-2025.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)    &   𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))       (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
 
Theoremimaf1homlem 49089 Lemma for imaf1hom 49090 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.)
𝑆 = (𝐹𝐴)    &   (𝜑𝐹:𝐵1-1𝐶)    &   (𝜑𝑋𝑆)       (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
 
Theoremimaf1hom 49090* The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.)
𝑆 = (𝐹𝐴)    &   (𝜑𝐹:𝐵1-1𝐶)    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   (𝜑𝐹𝑉)    &   𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))       (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
 
Theoremimaidfu2lem 49091 Lemma for imaidfu2 49093. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))       (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = (Base‘𝐷))
 
Theoremimaidfu 49092* The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Homf𝐷)    &   𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))    &   𝑆 = ((1st𝐼) “ 𝐴)       (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
 
Theoremimaidfu2 49093* The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
𝐼 = (idfunc𝐶)    &   (𝜑𝐼 ∈ (𝐷 Func 𝐸))    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Homf𝐷)    &   𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))    &   (𝜑𝑆 = (Base‘𝐷))       (𝜑𝐽 = 𝐾)
 
Theoremcofid1a 49094 Express the object part of (𝐺func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐺 ∈ (𝐸 Func 𝐷))    &   (𝜑 → (𝐺func 𝐹) = 𝐼)       (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑋)) = 𝑋)
 
Theoremcofid2a 49095 Express the morphism part of (𝐺func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐺 ∈ (𝐸 Func 𝐷))    &   (𝜑 → (𝐺func 𝐹) = 𝐼)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐷)    &   (𝜑𝑅 ∈ (𝑋𝐻𝑌))       (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)) = 𝑅)
 
Theoremcofid1 49096 Express the object part of (𝐺func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝐾(𝐸 Func 𝐷)𝐿)    &   (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)       (𝜑 → (𝐾‘(𝐹𝑋)) = 𝑋)
 
Theoremcofid2 49097 Express the morphism part of (𝐺func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝐾(𝐸 Func 𝐷)𝐿)    &   (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐷)    &   (𝜑𝑅 ∈ (𝑋𝐻𝑌))       (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = 𝑅)
 
Theoremcofidvala 49098* The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐺 ∈ (𝐸 Func 𝐷))    &   (𝜑 → (𝐺func 𝐹) = 𝐼)    &   𝐻 = (Hom ‘𝐷)       (𝜑 → (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))))
 
Theoremcofidf2a 49099 If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐺 ∈ (𝐸 Func 𝐷))    &   (𝜑 → (𝐺func 𝐹) = 𝐼)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))
 
Theoremcofidf1a 49100 If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.)
𝐼 = (idfunc𝐷)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐺 ∈ (𝐸 Func 𝐷))    &   (𝜑 → (𝐺func 𝐹) = 𝐼)    &   𝐶 = (Base‘𝐸)       (𝜑 → ((1st𝐹):𝐵1-1𝐶 ∧ (1st𝐺):𝐶onto𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49787
  Copyright terms: Public domain < Previous  Next >