MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbiran2d Structured version   Visualization version   GIF version

Theorem mpbiran2d 708
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypotheses
Ref Expression
mpbiran2d.1 (𝜑𝜃)
mpbiran2d.2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
mpbiran2d (𝜑 → (𝜓𝜒))

Proof of Theorem mpbiran2d
StepHypRef Expression
1 mpbiran2d.1 . 2 (𝜑𝜃)
2 mpbiran2d.2 . . 3 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
32biancomd 463 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
41, 3mpbirand 707 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  opelidres  5965  funsnfsupp  9350  discld  22983  cncfcdm  24798  itgfsum  25735  dchreq  27176  lgsneg  27239  lgsquadlem2  27299  dfconngr1  30124  cover2  37716  iscnrm3rlem6  48937  0funcglem  49076  0funcg2  49077  thincmon  49426  thincepi  49427
  Copyright terms: Public domain W3C validator