| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2d | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| mpbiran2d.1 | ⊢ (𝜑 → 𝜃) |
| mpbiran2d.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbiran2d | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2d.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | mpbiran2d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | biancomd 463 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| 4 | 1, 3 | mpbirand 707 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: opelidres 5965 funsnfsupp 9350 discld 22983 cncfcdm 24798 itgfsum 25735 dchreq 27176 lgsneg 27239 lgsquadlem2 27299 dfconngr1 30124 cover2 37716 iscnrm3rlem6 48937 0funcglem 49076 0funcg2 49077 thincmon 49426 thincepi 49427 |
| Copyright terms: Public domain | W3C validator |