MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbiran2d Structured version   Visualization version   GIF version

Theorem mpbiran2d 708
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypotheses
Ref Expression
mpbiran2d.1 (𝜑𝜃)
mpbiran2d.2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
mpbiran2d (𝜑 → (𝜓𝜒))

Proof of Theorem mpbiran2d
StepHypRef Expression
1 mpbiran2d.1 . 2 (𝜑𝜃)
2 mpbiran2d.2 . . 3 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
32biancomd 463 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
41, 3mpbirand 707 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  opelidres  5946  funsnfsupp  9301  discld  22992  cncfcdm  24807  itgfsum  25744  dchreq  27185  lgsneg  27248  lgsquadlem2  27308  dfconngr1  30150  cover2  37694  iscnrm3rlem6  48930  0funcglem  49069  0funcg2  49070  thincmon  49419  thincepi  49420
  Copyright terms: Public domain W3C validator