MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbiran2d Structured version   Visualization version   GIF version

Theorem mpbiran2d 708
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypotheses
Ref Expression
mpbiran2d.1 (𝜑𝜃)
mpbiran2d.2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
mpbiran2d (𝜑 → (𝜓𝜒))

Proof of Theorem mpbiran2d
StepHypRef Expression
1 mpbiran2d.1 . 2 (𝜑𝜃)
2 mpbiran2d.2 . . 3 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
32biancomd 463 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
41, 3mpbirand 707 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  opelidres  5940  funsnfsupp  9276  discld  23005  cncfcdm  24819  itgfsum  25756  dchreq  27197  lgsneg  27260  lgsquadlem2  27320  dfconngr1  30166  cover2  37761  iscnrm3rlem6  48982  0funcglem  49121  0funcg2  49122  thincmon  49471  thincepi  49472
  Copyright terms: Public domain W3C validator