Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbiran2d | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
mpbiran2d.1 | ⊢ (𝜑 → 𝜃) |
mpbiran2d.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbiran2d | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2d.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | mpbiran2d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | biancomd 463 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
4 | 1, 3 | mpbirand 703 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: opelidres 5892 funsnfsupp 9082 discld 22148 cncffvrn 23967 itgfsum 24896 dchreq 26311 lgsneg 26374 lgsquadlem2 26434 dfconngr1 28453 cover2 35799 iscnrm3rlem6 46127 thincmon 46203 thincepi 46204 |
Copyright terms: Public domain | W3C validator |