| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcf2lem2 | Structured version Visualization version GIF version | ||
| Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcf2lem2.b | ⊢ 𝐵 = (𝐸‘𝐶) |
| Ref | Expression |
|---|---|
| funcf2lem2 | ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf2lem 49206 | . . 3 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 2 | 3simpc 1150 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) → (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 4 | fnov 7483 | . . . . . 6 ⊢ (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦))) | |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (𝐺 Fn (𝐵 × 𝐵) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦))) |
| 6 | funcf2lem2.b | . . . . . . 7 ⊢ 𝐵 = (𝐸‘𝐶) | |
| 7 | 6 | fvexi 6842 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 8 | 7, 7 | mpoex 8017 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦)) ∈ V |
| 9 | 5, 8 | eqeltrdi 2841 | . . . 4 ⊢ (𝐺 Fn (𝐵 × 𝐵) → 𝐺 ∈ V) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 ∈ V) |
| 11 | simpl 482 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 Fn (𝐵 × 𝐵)) | |
| 12 | simpr 484 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) | |
| 13 | 10, 11, 12, 1 | syl3anbrc 1344 | . 2 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 14 | 3, 13 | impbii 209 | 1 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 × cxp 5617 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1st c1st 7925 2nd c2nd 7926 ↑m cmap 8756 Xcixp 8827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 |
| This theorem is referenced by: 0funcg2 49209 0funcALT 49213 fucofulem2 49436 |
| Copyright terms: Public domain | W3C validator |