| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcf2lem2 | Structured version Visualization version GIF version | ||
| Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| funcf2lem2.b | ⊢ 𝐵 = (𝐸‘𝐶) | 
| Ref | Expression | 
|---|---|
| funcf2lem2 | ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funcf2lem 48859 | . . 3 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 2 | 3simpc 1150 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) → (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | 
| 4 | fnov 7545 | . . . . . 6 ⊢ (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦))) | |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (𝐺 Fn (𝐵 × 𝐵) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦))) | 
| 6 | funcf2lem2.b | . . . . . . 7 ⊢ 𝐵 = (𝐸‘𝐶) | |
| 7 | 6 | fvexi 6899 | . . . . . 6 ⊢ 𝐵 ∈ V | 
| 8 | 7, 7 | mpoex 8085 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐺𝑦)) ∈ V | 
| 9 | 5, 8 | eqeltrdi 2841 | . . . 4 ⊢ (𝐺 Fn (𝐵 × 𝐵) → 𝐺 ∈ V) | 
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 ∈ V) | 
| 11 | simpl 482 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 Fn (𝐵 × 𝐵)) | |
| 12 | simpr 484 | . . 3 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) | |
| 13 | 10, 11, 12, 1 | syl3anbrc 1343 | . 2 ⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) | 
| 14 | 3, 13 | impbii 209 | 1 ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 × cxp 5663 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 1st c1st 7993 2nd c2nd 7994 ↑m cmap 8847 Xcixp 8918 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-map 8849 df-ixp 8919 | 
| This theorem is referenced by: 0funcg2 48862 0funcALT 48866 fucofulem2 48958 | 
| Copyright terms: Public domain | W3C validator |