Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23h | Structured version Visualization version GIF version |
Description: Theorem 19.23 of [Margaris] p. 90. See 19.23 2204. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
Ref | Expression |
---|---|
19.23h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.23h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23h.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | nf5i 2142 | . 2 ⊢ Ⅎ𝑥𝜓 |
3 | 2 | 19.23 2204 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |