![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23h | Structured version Visualization version GIF version |
Description: Theorem 19.23 of [Margaris] p. 90. See 19.23 2203. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
Ref | Expression |
---|---|
19.23h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.23h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23h.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | nf5i 2141 | . 2 ⊢ Ⅎ𝑥𝜓 |
3 | 2 | 19.23 2203 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |