MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23h Structured version   Visualization version   GIF version

Theorem 19.23h 2299
Description: Theorem 19.23 of [Margaris] p. 90. See 19.23 2248. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypothesis
Ref Expression
19.23h.1 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
19.23h (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.23h
StepHypRef Expression
1 19.23h.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2191 . 2 𝑥𝜓
3219.23 2248 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wal 1635  wex 1859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-10 2186  ax-12 2215
This theorem depends on definitions:  df-bi 198  df-or 866  df-ex 1860  df-nf 1864
This theorem is referenced by:  equsalhwOLD  2301
  Copyright terms: Public domain W3C validator