Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nf5i | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2143 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfnaew 2147 nfnaewOLD 2148 nfe1 2149 sbh 2268 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2321 hbex 2323 nfsbv 2328 hbsbwOLD 2330 cbv3hv 2339 dvelimhw 2345 cbv3h 2404 equsalh 2420 equsexh 2421 nfae 2433 axc16i 2436 dvelimh 2450 nfs1 2492 hbsb 2529 sb7h 2531 nfsab 2728 nfsabg 2729 cleqh 2862 nfcii 2890 nfcriOLDOLDOLD 2900 bnj596 32626 bnj1146 32671 bnj1379 32710 bnj1464 32724 bnj1468 32726 bnj605 32787 bnj607 32796 bnj916 32813 bnj964 32823 bnj981 32830 bnj983 32831 bnj1014 32841 bnj1123 32866 bnj1373 32910 bnj1417 32921 bnj1445 32924 bnj1463 32935 bnj1497 32940 bj-cbv3hv2 34904 bj-equsalhv 34915 bj-nfs1v 34922 bj-nfsab1 34925 bj-gabima 35055 wl-nfalv 35611 nfequid-o 36851 nfa1-o 36856 2sb5ndVD 42419 2sb5ndALT 42441 |
Copyright terms: Public domain | W3C validator |