![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nf5i | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2140 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1798 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2136 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 |
This theorem is referenced by: nfnaew 2144 nfnaewOLD 2145 nfe1 2146 sbh 2264 nf5di 2281 19.9h 2282 19.21h 2283 19.23h 2284 exlimih 2285 exlimdh 2286 equsalhw 2287 equsexhv 2288 hban 2296 hb3an 2297 nfal 2316 hbex 2318 nfsbv 2323 hbsbwOLD 2325 cbv3hv 2336 dvelimhw 2341 cbv3h 2402 equsalh 2418 equsexh 2419 nfae 2431 axc16i 2434 dvelimh 2448 nfs1 2490 hbsb 2527 sb7h 2529 nfsab 2726 nfsabg 2727 cleqh 2860 nfcii 2888 nfcriOLDOLDOLD 2898 nfralw 3290 bnj596 33025 bnj1146 33070 bnj1379 33109 bnj1464 33123 bnj1468 33125 bnj605 33186 bnj607 33195 bnj916 33212 bnj964 33222 bnj981 33229 bnj983 33230 bnj1014 33240 bnj1123 33265 bnj1373 33309 bnj1417 33320 bnj1445 33323 bnj1463 33334 bnj1497 33339 bj-cbv3hv2 35073 bj-equsalhv 35084 bj-nfs1v 35091 bj-nfsab1 35094 bj-gabima 35223 wl-nfalv 35797 nfequid-o 37185 nfa1-o 37190 2sb5ndVD 42859 2sb5ndALT 42881 |
Copyright terms: Public domain | W3C validator |