Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nf5i | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2142 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfnaew 2146 nfnaewOLD 2147 nfe1 2148 sbh 2266 nf5di 2283 19.9h 2284 19.21h 2285 19.23h 2286 exlimih 2287 exlimdh 2288 equsalhw 2289 equsexhv 2290 hban 2298 hb3an 2299 nfal 2318 hbex 2320 nfsbv 2325 hbsbwOLD 2327 cbv3hv 2338 dvelimhw 2344 cbv3h 2405 equsalh 2421 equsexh 2422 nfae 2434 axc16i 2437 dvelimh 2451 nfs1 2493 hbsb 2530 sb7h 2532 nfsab 2729 nfsabg 2730 cleqh 2863 nfcii 2892 nfcriOLDOLDOLD 2902 nfralw 3152 bnj596 32735 bnj1146 32780 bnj1379 32819 bnj1464 32833 bnj1468 32835 bnj605 32896 bnj607 32905 bnj916 32922 bnj964 32932 bnj981 32939 bnj983 32940 bnj1014 32950 bnj1123 32975 bnj1373 33019 bnj1417 33030 bnj1445 33033 bnj1463 33044 bnj1497 33049 bj-cbv3hv2 34986 bj-equsalhv 34997 bj-nfs1v 35004 bj-nfsab1 35007 bj-gabima 35137 wl-nfalv 35693 nfequid-o 36931 nfa1-o 36936 2sb5ndVD 42537 2sb5ndALT 42559 |
Copyright terms: Public domain | W3C validator |