![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nf5i | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2142 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1793 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-10 2138 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 |
This theorem is referenced by: nfnaew 2146 nfe1 2147 sbh 2270 nf5di 2283 19.9h 2284 19.21h 2285 19.23h 2286 exlimih 2287 exlimdh 2288 equsalhw 2289 equsexhv 2290 hban 2298 hb3an 2299 nfal 2321 hbex 2323 nfsbv 2328 cbv3hv 2340 dvelimhw 2345 cbv3h 2406 equsalh 2422 equsexh 2423 nfae 2435 axc16i 2438 dvelimh 2452 nfs1 2490 hbsb 2526 sb7h 2528 nfsab 2724 nfsabg 2725 cleqh 2868 nfcii 2891 nfralw 3308 bnj596 34738 bnj1146 34783 bnj1379 34822 bnj1464 34836 bnj1468 34838 bnj605 34899 bnj607 34908 bnj916 34925 bnj964 34935 bnj981 34942 bnj983 34943 bnj1014 34953 bnj1123 34978 bnj1373 35022 bnj1417 35033 bnj1445 35036 bnj1463 35047 bnj1497 35052 bj-cbv3hv2 36777 bj-equsalhv 36788 bj-nfs1v 36795 bj-nfsab1 36798 bj-gabima 36922 wl-nfalv 37505 nfequid-o 38891 nfa1-o 38896 2sb5ndVD 44907 2sb5ndALT 44929 |
Copyright terms: Public domain | W3C validator |