| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2146 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnaew 2150 nfe1 2151 sbh 2273 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3hv 2338 dvelimhw 2343 cbv3h 2402 equsalh 2418 equsexh 2419 nfae 2431 axc16i 2434 dvelimh 2448 nfs1 2486 hbsb 2522 sb7h 2524 nfsab 2719 nfsabg 2720 cleqh 2857 nfcii 2880 nfralw 3276 bnj596 34713 bnj1146 34758 bnj1379 34797 bnj1464 34811 bnj1468 34813 bnj605 34874 bnj607 34883 bnj916 34900 bnj964 34910 bnj981 34917 bnj983 34918 bnj1014 34928 bnj1123 34953 bnj1373 34997 bnj1417 35008 bnj1445 35011 bnj1463 35022 bnj1497 35027 bj-cbv3hv2 36773 bj-equsalhv 36784 bj-nfs1v 36791 bj-nfsab1 36794 bj-gabima 36918 wl-nfalv 37503 nfequid-o 38893 nfa1-o 38898 2sb5ndVD 44887 2sb5ndALT 44909 |
| Copyright terms: Public domain | W3C validator |