| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2145 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnaew 2149 nfe1 2150 sbh 2273 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2323 hbex 2325 nfsbv 2330 cbv3hv 2341 dvelimhw 2346 cbv3h 2408 equsalh 2424 equsexh 2425 nfae 2437 axc16i 2440 dvelimh 2454 nfs1 2492 hbsb 2528 sb7h 2530 nfsab 2725 nfsabg 2726 cleqh 2864 nfcii 2887 nfralw 3291 bnj596 34777 bnj1146 34822 bnj1379 34861 bnj1464 34875 bnj1468 34877 bnj605 34938 bnj607 34947 bnj916 34964 bnj964 34974 bnj981 34981 bnj983 34982 bnj1014 34992 bnj1123 35017 bnj1373 35061 bnj1417 35072 bnj1445 35075 bnj1463 35086 bnj1497 35091 bj-cbv3hv2 36813 bj-equsalhv 36824 bj-nfs1v 36831 bj-nfsab1 36834 bj-gabima 36958 wl-nfalv 37543 nfequid-o 38928 nfa1-o 38933 2sb5ndVD 44934 2sb5ndALT 44956 |
| Copyright terms: Public domain | W3C validator |