![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nf5i | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2145 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1795 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfnaew 2149 nfnaewOLD 2150 nfe1 2151 sbh 2274 nf5di 2289 19.9h 2290 19.21h 2291 19.23h 2292 exlimih 2293 exlimdh 2294 equsalhw 2295 equsexhv 2296 hban 2304 hb3an 2305 nfal 2327 hbex 2329 nfsbv 2334 cbv3hv 2346 dvelimhw 2351 cbv3h 2412 equsalh 2428 equsexh 2429 nfae 2441 axc16i 2444 dvelimh 2458 nfs1 2496 hbsb 2532 sb7h 2534 nfsab 2730 nfsabg 2731 cleqh 2874 nfcii 2897 nfralw 3317 bnj596 34722 bnj1146 34767 bnj1379 34806 bnj1464 34820 bnj1468 34822 bnj605 34883 bnj607 34892 bnj916 34909 bnj964 34919 bnj981 34926 bnj983 34927 bnj1014 34937 bnj1123 34962 bnj1373 35006 bnj1417 35017 bnj1445 35020 bnj1463 35031 bnj1497 35036 bj-cbv3hv2 36761 bj-equsalhv 36772 bj-nfs1v 36779 bj-nfsab1 36782 bj-gabima 36906 wl-nfalv 37479 nfequid-o 38866 nfa1-o 38871 2sb5ndVD 44881 2sb5ndALT 44903 |
Copyright terms: Public domain | W3C validator |