| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2146 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnaew 2150 nfe1 2151 sbh 2273 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3hv 2338 dvelimhw 2343 cbv3h 2403 equsalh 2419 equsexh 2420 nfae 2432 axc16i 2435 dvelimh 2449 nfs1 2487 hbsb 2523 sb7h 2525 nfsab 2720 nfsabg 2721 cleqh 2858 nfcii 2881 nfralw 3287 bnj596 34743 bnj1146 34788 bnj1379 34827 bnj1464 34841 bnj1468 34843 bnj605 34904 bnj607 34913 bnj916 34930 bnj964 34940 bnj981 34947 bnj983 34948 bnj1014 34958 bnj1123 34983 bnj1373 35027 bnj1417 35038 bnj1445 35041 bnj1463 35052 bnj1497 35057 bj-cbv3hv2 36790 bj-equsalhv 36801 bj-nfs1v 36808 bj-nfsab1 36811 bj-gabima 36935 wl-nfalv 37520 nfequid-o 38910 nfa1-o 38915 2sb5ndVD 44906 2sb5ndALT 44928 |
| Copyright terms: Public domain | W3C validator |