| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2148 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfnaew 2152 nfe1 2153 sbh 2275 nf5di 2287 19.9h 2288 19.21h 2289 19.23h 2290 exlimih 2291 exlimdh 2292 equsalhw 2293 equsexhv 2294 hban 2302 hb3an 2303 nfal 2324 hbex 2326 nfsbv 2331 cbv3hv 2340 dvelimhw 2345 cbv3h 2404 equsalh 2420 equsexh 2421 nfae 2433 axc16i 2436 dvelimh 2450 nfs1 2488 hbsb 2524 sb7h 2526 nfsab 2721 nfsabg 2722 cleqh 2860 nfcii 2883 nfralw 3279 bnj596 34758 bnj1146 34803 bnj1379 34842 bnj1464 34856 bnj1468 34858 bnj605 34919 bnj607 34928 bnj916 34945 bnj964 34955 bnj981 34962 bnj983 34963 bnj1014 34973 bnj1123 34998 bnj1373 35042 bnj1417 35053 bnj1445 35056 bnj1463 35067 bnj1497 35072 bj-cbv3hv2 36839 bj-equsalhv 36850 bj-nfs1v 36857 bj-nfsab1 36860 bj-gabima 36984 wl-nfalv 37569 nfequid-o 39019 nfa1-o 39024 2sb5ndVD 45012 2sb5ndALT 45034 |
| Copyright terms: Public domain | W3C validator |