| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2146 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnaew 2150 nfe1 2151 sbh 2273 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3hv 2338 dvelimhw 2343 cbv3h 2402 equsalh 2418 equsexh 2419 nfae 2431 axc16i 2434 dvelimh 2448 nfs1 2486 hbsb 2522 sb7h 2524 nfsab 2719 nfsabg 2720 cleqh 2857 nfcii 2880 nfralw 3285 bnj596 34736 bnj1146 34781 bnj1379 34820 bnj1464 34834 bnj1468 34836 bnj605 34897 bnj607 34906 bnj916 34923 bnj964 34933 bnj981 34940 bnj983 34941 bnj1014 34951 bnj1123 34976 bnj1373 35020 bnj1417 35031 bnj1445 35034 bnj1463 35045 bnj1497 35050 bj-cbv3hv2 36783 bj-equsalhv 36794 bj-nfs1v 36801 bj-nfsab1 36804 bj-gabima 36928 wl-nfalv 37513 nfequid-o 38903 nfa1-o 38908 2sb5ndVD 44899 2sb5ndALT 44921 |
| Copyright terms: Public domain | W3C validator |