| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5i | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5i.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nf5i | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5-1 2146 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 2 | nf5i.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnaew 2150 nfe1 2151 sbh 2273 nf5di 2285 19.9h 2286 19.21h 2287 19.23h 2288 exlimih 2289 exlimdh 2290 equsalhw 2291 equsexhv 2292 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3hv 2338 dvelimhw 2343 cbv3h 2402 equsalh 2418 equsexh 2419 nfae 2431 axc16i 2434 dvelimh 2448 nfs1 2486 hbsb 2522 sb7h 2524 nfsab 2719 nfsabg 2720 cleqh 2857 nfcii 2880 nfralw 3283 bnj596 34709 bnj1146 34754 bnj1379 34793 bnj1464 34807 bnj1468 34809 bnj605 34870 bnj607 34879 bnj916 34896 bnj964 34906 bnj981 34913 bnj983 34914 bnj1014 34924 bnj1123 34949 bnj1373 34993 bnj1417 35004 bnj1445 35007 bnj1463 35018 bnj1497 35023 bj-cbv3hv2 36756 bj-equsalhv 36767 bj-nfs1v 36774 bj-nfsab1 36777 bj-gabima 36901 wl-nfalv 37486 nfequid-o 38876 nfa1-o 38881 2sb5ndVD 44872 2sb5ndALT 44894 |
| Copyright terms: Public domain | W3C validator |