MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5i Structured version   Visualization version   GIF version

Theorem nf5i 2147
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nf5i.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
nf5i 𝑥𝜑

Proof of Theorem nf5i
StepHypRef Expression
1 nf5-1 2146 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
2 nf5i.1 . 2 (𝜑 → ∀𝑥𝜑)
31, 2mpg 1797 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-10 2142
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfnaew  2150  nfe1  2151  sbh  2273  nf5di  2285  19.9h  2286  19.21h  2287  19.23h  2288  exlimih  2289  exlimdh  2290  equsalhw  2291  equsexhv  2292  hban  2300  hb3an  2301  nfal  2322  hbex  2324  nfsbv  2329  cbv3hv  2338  dvelimhw  2343  cbv3h  2402  equsalh  2418  equsexh  2419  nfae  2431  axc16i  2434  dvelimh  2448  nfs1  2486  hbsb  2522  sb7h  2524  nfsab  2719  nfsabg  2720  cleqh  2857  nfcii  2880  nfralw  3276  bnj596  34713  bnj1146  34758  bnj1379  34797  bnj1464  34811  bnj1468  34813  bnj605  34874  bnj607  34883  bnj916  34900  bnj964  34910  bnj981  34917  bnj983  34918  bnj1014  34928  bnj1123  34953  bnj1373  34997  bnj1417  35008  bnj1445  35011  bnj1463  35022  bnj1497  35027  bj-cbv3hv2  36773  bj-equsalhv  36784  bj-nfs1v  36791  bj-nfsab1  36794  bj-gabima  36918  wl-nfalv  37503  nfequid-o  38893  nfa1-o  38898  2sb5ndVD  44887  2sb5ndALT  44909
  Copyright terms: Public domain W3C validator