HomeHome Metamath Proof Explorer
Theorem List (p. 23 of 453)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28704)
  Hilbert Space Explorer  Hilbert Space Explorer
(28705-30227)
  Users' Mathboxes  Users' Mathboxes
(30228-45259)
 

Theorem List for Metamath Proof Explorer - 2201-2300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfim1 2201 A closed form of nfim 1898. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) df-nf 1786 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfan1 2202 A closed form of nfan 1901. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1786 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theorem19.3t 2203 Closed form of 19.3 2204 and version of 19.9t 2206 with a universal quantifier. (Contributed by NM, 9-Nov-2020.) (Proof shortened by BJ, 9-Oct-2022.)
(Ⅎ𝑥𝜑 → (∀𝑥𝜑𝜑))
 
Theorem19.3 2204 A wff may be quantified with a variable not free in it. Version of 19.9 2207 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1987 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥𝜑𝜑)
 
Theorem19.9d 2205 A deduction version of one direction of 19.9 2207. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1786 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 8-Jul-2022.)
(𝜓 → Ⅎ𝑥𝜑)       (𝜓 → (∃𝑥𝜑𝜑))
 
Theorem19.9t 2206 Closed form of 19.9 2207 and version of 19.3t 2203 with an existential quantifier. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorem19.9 2207 A wff may be existentially quantified with a variable not free in it. Version of 19.3 2204 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1989 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.)
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theorem19.21t 2208 Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2209. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1786 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21 2209 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See 19.21v 1941 for a version requiring fewer axioms. See also 19.21h 2297. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1786 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremstdpc5 2210 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 2021. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. See stdpc5v 1940 for a version requiring fewer axioms. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2146. (Revised by Wolf Lammen, 4-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem19.21-2 2211 Version of 19.21 2209 with two quantifiers. (Contributed by NM, 4-Feb-2005.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
 
Theorem19.23t 2212 Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2213. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1786 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.)
(Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorem19.23 2213 Theorem 19.23 of [Margaris] p. 90. See 19.23v 1944 for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theoremalimd 2214 Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1812. See alimdh 1819, alimdv 1918 for variants requiring fewer axioms. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalrimi 2215 Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2209. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalrimdd 2216 Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2209. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalrimd 2217 Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2209. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximd 2218 Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1835. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremexlimi 2219 Inference associated with 19.23 2213. See exlimiv 1932 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimd 2220 Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimimdd 2221 Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) Shorten exlimdd 2222. (Revised by Wolf Lammen, 3-Sep-2023.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑𝜒)
 
Theoremexlimdd 2222 Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
TheoremexlimddOLD 2223 Obsolete version of exlimdd 2222 as of 3-Sep-2023. (Contributed by Mario Carneiro, 9-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
TheoremexlimimddOLD 2224 Obsolete version of exlimimdd 2221 as of 3-Sep-2023. (Contributed by ML, 17-Jul-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑𝜒)
 
Theoremnexd 2225 Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremalbid 2226 Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbid 2227 Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremnfbidf 2228 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1786 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
 
Theorem19.16 2229 Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))
 
Theorem19.17 2230 Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.27 2231 Theorem 19.27 of [Margaris] p. 90. See 19.27v 1997 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28 2232 Theorem 19.28 of [Margaris] p. 90. See 19.28v 1998 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.19 2233 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
 
Theorem19.36 2234 Theorem 19.36 of [Margaris] p. 90. See 19.36v 1995 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.36i 2235 Inference associated with 19.36 2234. See 19.36iv 1948 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
𝑥𝜓    &   𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.37 2236 Theorem 19.37 of [Margaris] p. 90. See 19.37v 1999 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
 
Theorem19.32 2237 Theorem 19.32 of [Margaris] p. 90. See 19.32v 1942 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
 
Theorem19.31 2238 Theorem 19.31 of [Margaris] p. 90. See 19.31v 1943 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.41 2239 Theorem 19.41 of [Margaris] p. 90. See 19.41v 1951 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.42 2240 Theorem 19.42 of [Margaris] p. 90. See 19.42v 1955 for a version requiring fewer axioms. See exan 1863 for an immediate version. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.44 2241 Theorem 19.44 of [Margaris] p. 90. See 19.44v 2000 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.45 2242 Theorem 19.45 of [Margaris] p. 90. See 19.45v 2001 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
 
Theoremspimfv 2243* Specialization, using implicit substitution. Version of spim 2407 with a disjoint variable condition, which does not require ax-13 2392. See spimvw 2003 for a version with two disjoint variable conditions, requiring fewer axioms, and spimv 2410 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremchvarfv 2244* Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 2415 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremcbv3v2 2245* Version of cbv3 2417 with two disjoint variable conditions, which does not require ax-11 2162 nor ax-13 2392. (Contributed by BJ, 24-Jun-2019.) (Proof shortened by Wolf Lammen, 30-Aug-2021.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremsb4av 2246* Version of sb4a 2511 with a disjoint variable condition, which does not require ax-13 2392. The distinctor antecedent from sb4b 2501 is replaced by a disjoint variable condition in this theorem. (Contributed by NM, 2-Feb-2007.) (Revised by BJ, 15-Dec-2023.)
([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
 
Theoremsbimd 2247 Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2071. (Revised by Steven Nguyen, 9-Jul-2023.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
 
Theoremsbbid 2248 Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2146 and ax-13 2392. (Revised by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2071. (Revised by Steven Nguyen, 11-Jul-2023.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theorem2sbbid 2249 Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))    &   𝑦𝜑       (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒))
 
TheoremsbbidOLD 2250 Obsolete version of sbbid 2248 as of 10-Jul-2023. Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2146 and ax-13 2392. (Revised by Wolf Lammen, 24-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbequ1 2251 An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.)
(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))
 
Theoremsbequ2 2252 An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Feb-2024.)
(𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))
 
Theoremsbequ2OLD 2253 Obsolete version of sbequ2 2252 as of 3-Feb-2024. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 25-Feb-2018.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))
 
Theoremstdpc7 2254 One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 2036.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑥)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12 2255 An equality theorem for substitution. (Contributed by NM, 14-May-1993.)
(𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
 
Theoremsbequ12r 2256 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbelx 2257* Elimination of substitution. Also see sbel2x 2500. (Contributed by NM, 5-Aug-1993.) Avoid ax-13 2392. (Revised by Wolf Lammen, 6-Aug-2023.) Avoid ax-10 2146. (Revised by Gino Giotto, 20-Aug-2023.)
(𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 
Theoremsbequ12a 2258 An equality theorem for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Jun-2019.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
 
Theoremsbid 2259 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremsbcov 2260* A composition law for substitution. Version of sbco 2551 with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Gino Giotto, 7-Aug-2023.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsb6a 2261* Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
 
Theoremsbid2vw 2262* Reverting substitution yields the original expression. Based on fewer axioms than sbid2v 2553, at the expense of an extra distinct variable condition. (Contributed by NM, 14-May-1993.) (Revised by Wolf Lammen, 5-Aug-2023.)
([𝑡 / 𝑥][𝑥 / 𝑡]𝜑𝜑)
 
Theoremaxc16g 2263* Generalization of axc16 2264. Use the latter when sufficient. This proof only requires, on top of { ax-1 6-- ax-7 2016 }, theorem ax12v 2180. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2392, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 7-Jul-2021.) Shorten axc11rv 2268. (Revised by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theoremaxc16 2264* Proof of older axiom ax-c16 36133. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremaxc16gb 2265* Biconditional strengthening of axc16g 2263. (Contributed by NM, 15-May-1993.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
 
Theoremaxc16nf 2266* If dtru 5258 is false, then there is only one element in the universe, so everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2162. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2146. (Revised by Wolf lammen, 12-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 
Theoremaxc11v 2267* Version of axc11 2454 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2016 }, from ax12v 2180 (contrary to axc11 2454 which seems to require the full ax-12 2179 and ax-13 2392). (Contributed by NM, 16-May-2008.) (Revised by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremaxc11rv 2268* Version of axc11r 2388 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2016 }, from ax12v 2180 (contrary to axc11 2454 which seems to require the full ax-12 2179 and ax-13 2392, and to axc11r 2388 which seems to require the full ax-12 2179). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
 
Theoremdrsb2 2269 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremequsalv 2270* An equivalence related to implicit substitution. Version of equsal 2441 with a disjoint variable condition, which does not require ax-13 2392. See equsalvw 2011 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv 2271. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexv 2271* An equivalence related to implicit substitution. Version of equsex 2442 with a disjoint variable condition, which does not require ax-13 2392. See equsexvw 2012 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2270. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremsbft 2272 Substitution has no effect on a non-free variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.)
(Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
 
Theoremsbf 2273 Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2099. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremsbf2 2274 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremsbh 2275 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremhbs1 2276* The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 26-May-1993.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1f 2277 If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremsb5 2278* Alternate definition of substitution when variables are disjoint. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1v 2096 and even needs no disjoint variable condition, see sb1 2505. Theorem sb5f 2540 replaces the disjoint variable condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) Shorten sb56 2279. (Revised by Wolf Lammen, 4-Sep-2023.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb56 2279* Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct, namely, alternate definitions sb5 2278 and sb6 2094. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2071. The implication "to the left" is equs4 2440 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 2007, requires fewer axioms). Theorem equs45f 2484 replaces the disjoint variable condition with a non-freeness hypothesis and equs5 2485 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2271 in place of equsex 2442 in order to remove dependency on ax-13 2392. (Revised by BJ, 20-Dec-2020.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb56OLD 2280* Obsolete version of sb56 2279 as of 4-Sep-2023. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2271 in place of equsex 2442 in order to remove dependency on ax-13 2392. (Revised by BJ, 20-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs5av 2281* A property related to substitution that replaces the distinctor from equs5 2485 to a disjoint variable condition. Version of equs5a 2482 with a disjoint variable condition, which does not require ax-13 2392. See also sb56 2279. (Contributed by NM, 2-Feb-2007.) (Revised by Gino Giotto, 15-Dec-2023.)
(∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6OLD 2282* Obsolete version of sb6 2094 as of 7-Jul-2023. Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left", sb2vOLD 2098, also holds without a disjoint variable condition (sb2 2506). Theorem sb6f 2539 replaces the disjoint variable condition with a non-freeness hypothesis. Theorem sb4b 2501 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5OLD 2283* Obsolete version of sb5 2278 as of 4-Sep-2023.) (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theorem2sb5 2284* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
 
Theoremsbco4lem 2285* Lemma for sbco4 2286. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbco4 2286* Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremdfsb7 2287* An alternate definition of proper substitution df-sb 2071. By introducing a dummy variable 𝑦 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑡, 𝑥, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑦 effectively insulates 𝑡 from 𝑥. To achieve this, we use a chain of two substitutions in the form of sb5 2278, first 𝑦 for 𝑥 then 𝑡 for 𝑦. Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2803. Theorem sb7h 2571 provides a version where 𝜑 and 𝑦 don't have to be distinct. (Contributed by NM, 28-Jan-2004.) Revise df-sb 2071. (Revised by BJ, 25-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Sep-2023.)
([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theoremdfsb7OLD 2288* Obsolete version of dfsb7 2287 as of 3-Sep-2023. (Contributed by NM, 28-Jan-2004.) Revise df-sb 2071. (Revised by BJ, 25-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsbn 2289 Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2071. (Revised by BJ, 25-Dec-2020.)
([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)
 
Theoremsbex 2290* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
TheoremsbbibOLD 2291* Obsolete version of sbbib 2382 as of 4-Sep-2023. (Contributed by AV, 6-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓       (∀𝑦([𝑦 / 𝑥]𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓))
 
Theoremnf5 2292 Alternate definition of df-nf 1786. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1786 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
 
Theoremnf6 2293 An alternate definition of df-nf 1786. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
 
Theoremnf5d 2294 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremnf5di 2295 Since the converse holds by a1i 11, this inference shows that we can represent a not-free hypothesis with either 𝑥𝜑 (inference form) or (𝜑 → Ⅎ𝑥𝜑) (deduction form). (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.)
(𝜑 → Ⅎ𝑥𝜑)       𝑥𝜑
 
Theorem19.9h 2296 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)
 
Theorem19.21h 2297 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See also 19.21 2209 and 19.21v 1941. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theorem19.23h 2298 Theorem 19.23 of [Margaris] p. 90. See 19.23 2213. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜓 → ∀𝑥𝜓)       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theoremexlimih 2299 Inference associated with 19.23 2213. See exlimiv 1932 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜓 → ∀𝑥𝜓)    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimdh 2300 Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.)
(𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45259
  Copyright terms: Public domain < Previous  Next >