Home | Metamath
Proof Explorer Theorem List (p. 23 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 19.9 2201 | A wff may be existentially quantified with a variable not free in it. Version of 19.3 2198 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1988 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.21t 2202 | Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2203. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | 19.21 2203 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See 19.21v 1943 for a version requiring fewer axioms. See also 19.21h 2287. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | stdpc5 2204 | An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis Ⅎ𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 2017. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. See stdpc5v 1942 for a version requiring fewer axioms. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2139. (Revised by Wolf Lammen, 4-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 19.21-2 2205 | Version of 19.21 2203 with two quantifiers. (Contributed by NM, 4-Feb-2005.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | 19.23t 2206 | Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2207. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | 19.23 2207 | Theorem 19.23 of [Margaris] p. 90. See 19.23v 1946 for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | alimd 2208 | Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1814. See alimdh 1821, alimdv 1920 for variants requiring fewer axioms. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
Theorem | alrimi 2209 | Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2203. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜓) | ||
Theorem | alrimdd 2210 | Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2203. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | alrimd 2211 | Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2203. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | eximd 2212 | Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1837. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | ||
Theorem | exlimi 2213 | Inference associated with 19.23 2207. See exlimiv 1934 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimd 2214 | Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | exlimimdd 2215 | Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) Shorten exlimdd 2216. (Revised by Wolf Lammen, 3-Sep-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | exlimdd 2216 | Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | nexd 2217 | Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥𝜓) | ||
Theorem | albid 2218 | Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
Theorem | exbid 2219 | Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | nfbidf 2220 | An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | ||
Theorem | 19.16 2221 | Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | ||
Theorem | 19.17 2222 | Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ 𝜓)) | ||
Theorem | 19.27 2223 | Theorem 19.27 of [Margaris] p. 90. See 19.27v 1994 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.28 2224 | Theorem 19.28 of [Margaris] p. 90. See 19.28v 1995 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
Theorem | 19.19 2225 | Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) | ||
Theorem | 19.36 2226 | Theorem 19.36 of [Margaris] p. 90. See 19.36v 1992 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) | ||
Theorem | 19.36i 2227 | Inference associated with 19.36 2226. See 19.36iv 1951 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 & ⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | 19.37 2228 | Theorem 19.37 of [Margaris] p. 90. See 19.37v 1996 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.32 2229 | Theorem 19.32 of [Margaris] p. 90. See 19.32v 1944 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) | ||
Theorem | 19.31 2230 | Theorem 19.31 of [Margaris] p. 90. See 19.31v 1945 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.41 2231 | Theorem 19.41 of [Margaris] p. 90. See 19.41v 1954 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.42 2232 | Theorem 19.42 of [Margaris] p. 90. See 19.42v 1958 for a version requiring fewer axioms. See exan 1866 for an immediate version. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.44 2233 | Theorem 19.44 of [Margaris] p. 90. See 19.44v 1997 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.45 2234 | Theorem 19.45 of [Margaris] p. 90. See 19.45v 1998 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | spimfv 2235* | Specialization, using implicit substitution. Version of spim 2387 with a disjoint variable condition, which does not require ax-13 2372. See spimvw 2000 for a version with two disjoint variable conditions, requiring fewer axioms, and spimv 2390 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | chvarfv 2236* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 2395 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | cbv3v2 2237* | Version of cbv3 2397 with two disjoint variable conditions, which does not require ax-11 2156 nor ax-13 2372. (Contributed by BJ, 24-Jun-2019.) (Proof shortened by Wolf Lammen, 30-Aug-2021.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | sbalex 2238* |
Equivalence of two ways to express proper substitution of a setvar for
another setvar disjoint from it in a formula. This proof of their
equivalence does not use df-sb 2069.
That both sides of the biconditional express proper substitution is proved by sb5 2271 and sb6 2089. The implication "to the left" is equs4v 2004 and does not require ax-10 2139 nor ax-12 2173. It also holds without disjoint variable condition if we allow more axioms (see equs4 2416). Theorem 6.2 of [Quine] p. 40. Theorem equs5 2460 replaces the disjoint variable condition with a distinctor antecedent. Theorem equs45f 2459 replaces the disjoint variable condition on 𝑥, 𝑡 with the nonfreeness hypothesis of 𝑡 in 𝜑. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2263 in place of equsex 2418 in order to remove dependency on ax-13 2372. (Revised by BJ, 20-Dec-2020.) Revise to remove dependency on df-sb 2069. (Revised by BJ, 21-Sep-2024.) |
⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | sb4av 2239* | Version of sb4a 2484 with a disjoint variable condition, which does not require ax-13 2372. The distinctor antecedent from sb4b 2475 is replaced by a disjoint variable condition in this theorem. (Contributed by NM, 2-Feb-2007.) (Revised by BJ, 15-Dec-2023.) |
⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | sbimd 2240 | Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2069. (Revised by Steven Nguyen, 9-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) | ||
Theorem | sbbid 2241 | Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2139 and ax-13 2372. (Revised by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2069. (Revised by Steven Nguyen, 11-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | ||
Theorem | 2sbbid 2242 | Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) | ||
Theorem | sbequ1 2243 | An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) |
⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) | ||
Theorem | sbequ2 2244 | An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Feb-2024.) |
⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) | ||
Theorem | sbequ2OLD 2245 | Obsolete version of sbequ2 2244 as of 3-Feb-2024. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 25-Feb-2018.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) | ||
Theorem | stdpc7 2246 | One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 2032.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑥)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) | ||
Theorem | sbequ12 2247 | An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbequ12r 2248 | An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
Theorem | sbelx 2249* | Elimination of substitution. Also see sbel2x 2474. (Contributed by NM, 5-Aug-1993.) Avoid ax-13 2372. (Revised by Wolf Lammen, 6-Aug-2023.) Avoid ax-10 2139. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbequ12a 2250 | An equality theorem for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Jun-2019.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbid 2251 | An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbcov 2252* | A composition law for substitution. Version of sbco 2511 with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Gino Giotto, 7-Aug-2023.) |
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sb6a 2253* | Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbid2vw 2254* | Reverting substitution yields the original expression. Based on fewer axioms than sbid2v 2513, at the expense of an extra distinct variable condition. (Contributed by NM, 14-May-1993.) (Revised by Wolf Lammen, 5-Aug-2023.) |
⊢ ([𝑡 / 𝑥][𝑥 / 𝑡]𝜑 ↔ 𝜑) | ||
Theorem | axc16g 2255* | Generalization of axc16 2256. Use the latter when sufficient. This proof only requires, on top of { ax-1 6-- ax-7 2012 }, Theorem ax12v 2174. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2372, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 7-Jul-2021.) Shorten axc11rv 2260. (Revised by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | axc16 2256* | Proof of older axiom ax-c16 36833. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16gb 2257* | Biconditional strengthening of axc16g 2255. (Contributed by NM, 15-May-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) | ||
Theorem | axc16nf 2258* | If dtru 5288 is false, then there is only one element in the universe, so everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2156. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2139. (Revised by Wolf Lammen, 12-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) | ||
Theorem | axc11v 2259* | Version of axc11 2430 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2012 }, from ax12v 2174 (contrary to axc11 2430 which seems to require the full ax-12 2173 and ax-13 2372). (Contributed by NM, 16-May-2008.) (Revised by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | axc11rv 2260* | Version of axc11r 2366 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2012 }, from ax12v 2174 (contrary to axc11 2430 which seems to require the full ax-12 2173 and ax-13 2372, and to axc11r 2366 which seems to require the full ax-12 2173). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) | ||
Theorem | drsb2 2261 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | ||
Theorem | equsalv 2262* | An equivalence related to implicit substitution. Version of equsal 2417 with a disjoint variable condition, which does not require ax-13 2372. See equsalvw 2008 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv 2263. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexv 2263* | An equivalence related to implicit substitution. Version of equsex 2418 with a disjoint variable condition, which does not require ax-13 2372. See equsexvw 2009 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2262. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) Avoid ax-10 2139. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexvOLD 2264* | Obsolete version of equsexv 2263 as of 18-Nov-2024. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | sbft 2265 | Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbf 2266 | Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2092. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbf2 2267 | Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.) |
⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbh 2268 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | hbs1 2269* | The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 26-May-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1f 2270 | If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | sb5 2271* | Alternate definition of substitution when variables are disjoint. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1v 2091 and even needs no disjoint variable condition, see sb1 2479. Theorem sb5f 2502 replaces the disjoint variable condition with a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Revised by Wolf Lammen, 4-Sep-2023.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb5OLD 2272* | Obsolete version of sb5 2271 as of 21-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb56OLD 2273* | Obsolete version of sbalex 2238 as of 21-Sep-2024. Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct, namely, alternate definitions sb5 2271 and sb6 2089. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2069. The implication "to the left" is equs4 2416 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 2004, requires fewer axioms). Theorem equs45f 2459 replaces the disjoint variable condition with a nonfreeness hypothesis and equs5 2460 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2263 in place of equsex 2418 in order to remove dependency on ax-13 2372. (Revised by BJ, 20-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5av 2274* | A property related to substitution that replaces the distinctor from equs5 2460 to a disjoint variable condition. Version of equs5a 2457 with a disjoint variable condition, which does not require ax-13 2372. See also sbalex 2238. (Contributed by NM, 2-Feb-2007.) (Revised by Gino Giotto, 15-Dec-2023.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | 2sb5 2275* | Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) | ||
Theorem | sbco4lem 2276* | Lemma for sbco4 2278. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) |
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sbco4lemOLD 2277* | Obsolete version of sbco4lem 2276 as of 12-Oct-2024. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sbco4 2278* | Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.) |
⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | dfsb7 2279* | An alternate definition of proper substitution df-sb 2069. By introducing a dummy variable 𝑦 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑡, 𝑥, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑦 effectively insulates 𝑡 from 𝑥. To achieve this, we use a chain of two substitutions in the form of sb5 2271, first 𝑦 for 𝑥 then 𝑡 for 𝑦. Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2716. Theorem sb7h 2531 provides a version where 𝜑 and 𝑦 don't have to be distinct. (Contributed by NM, 28-Jan-2004.) Revise df-sb 2069. (Revised by BJ, 25-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Sep-2023.) |
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sbn 2280 | Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2069. (Revised by BJ, 25-Dec-2020.) |
⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) | ||
Theorem | sbex 2281* | Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | ||
Theorem | nf5 2282 | Alternate definition of df-nf 1788. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | ||
Theorem | nf6 2283 | An alternate definition of df-nf 1788. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | nf5d 2284 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
Theorem | nf5di 2285 | Since the converse holds by a1i 11, this inference shows that we can represent a not-free hypothesis with either Ⅎ𝑥𝜑 (inference form) or (𝜑 → Ⅎ𝑥𝜑) (deduction form). (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.) |
⊢ (𝜑 → Ⅎ𝑥𝜑) ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | 19.9h 2286 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.21h 2287 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See also 19.21 2203 and 19.21v 1943. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 19.23h 2288 | Theorem 19.23 of [Margaris] p. 90. See 19.23 2207. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | exlimih 2289 | Inference associated with 19.23 2207. See exlimiv 1934 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimdh 2290 | Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | equsalhw 2291* | Version of equsalh 2420 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexhv 2292* | An equivalence related to implicit substitution. Version of equsexh 2421 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | hba1 2293 | The setvar 𝑥 is not free in ∀𝑥𝜑. This corresponds to the axiom (4) of modal logic. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Oct-2021.) |
⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | hbnt 2294 | Closed theorem version of bound-variable hypothesis builder hbn 2295. (Contributed by NM, 10-May-1993.) (Proof shortened by Wolf Lammen, 14-Oct-2021.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbn 2295 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbnd 2296 | Deduction form of bound-variable hypothesis builder hbn 2295. (Contributed by NM, 3-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) | ||
Theorem | hbim1 2297 | A closed form of hbim 2299. (Contributed by NM, 2-Jun-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | hbimd 2298 | Deduction form of bound-variable hypothesis builder hbim 2299. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) | ||
Theorem | hbim 2299 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 3-Mar-2008.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | hban 2300 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |