![]() |
Metamath
Proof Explorer Theorem List (p. 23 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfan1 2201 | A closed form of nfan 1898. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | ||
Theorem | 19.3t 2202 | Closed form of 19.3 2203 and version of 19.9t 2205 with a universal quantifier. (Contributed by NM, 9-Nov-2020.) (Proof shortened by BJ, 9-Oct-2022.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥𝜑 ↔ 𝜑)) | ||
Theorem | 19.3 2203 | A wff may be quantified with a variable not free in it. Version of 19.9 2206 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1981 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.9d 2204 | A deduction version of one direction of 19.9 2206. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1782 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
⊢ (𝜓 → Ⅎ𝑥𝜑) ⇒ ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9t 2205 | Closed form of 19.9 2206 and version of 19.3t 2202 with an existential quantifier. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) |
⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | ||
Theorem | 19.9 2206 | A wff may be existentially quantified with a variable not free in it. Version of 19.3 2203 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1983 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.21t 2207 | Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1782 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | 19.21 2208 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See 19.21v 1938 for a version requiring fewer axioms. See also 19.21h 2291. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | stdpc5 2209 | An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis Ⅎ𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 2012. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. See stdpc5v 1937 for a version requiring fewer axioms. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 4-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 19.21-2 2210 | Version of 19.21 2208 with two quantifiers. (Contributed by NM, 4-Feb-2005.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | 19.23t 2211 | Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2212. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1782 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | 19.23 2212 | Theorem 19.23 of [Margaris] p. 90. See 19.23v 1941 for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | alimd 2213 | Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1808. See alimdh 1815, alimdv 1915 for variants requiring fewer axioms. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
Theorem | alrimi 2214 | Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜓) | ||
Theorem | alrimdd 2215 | Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | alrimd 2216 | Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | eximd 2217 | Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1832. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | ||
Theorem | exlimi 2218 | Inference associated with 19.23 2212. See exlimiv 1929 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimd 2219 | Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | exlimimdd 2220 | Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) Shorten exlimdd 2221. (Revised by Wolf Lammen, 3-Sep-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | exlimdd 2221 | Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | nexd 2222 | Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥𝜓) | ||
Theorem | albid 2223 | Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
Theorem | exbid 2224 | Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | nfbidf 2225 | An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | ||
Theorem | 19.16 2226 | Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | ||
Theorem | 19.17 2227 | Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ 𝜓)) | ||
Theorem | 19.27 2228 | Theorem 19.27 of [Margaris] p. 90. See 19.27v 1989 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.28 2229 | Theorem 19.28 of [Margaris] p. 90. See 19.28v 1990 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 7-May-2025.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
Theorem | 19.19 2230 | Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) | ||
Theorem | 19.36 2231 | Theorem 19.36 of [Margaris] p. 90. See 19.36v 1987 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) | ||
Theorem | 19.36i 2232 | Inference associated with 19.36 2231. See 19.36iv 1946 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
⊢ Ⅎ𝑥𝜓 & ⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | 19.37 2233 | Theorem 19.37 of [Margaris] p. 90. See 19.37v 1991 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.32 2234 | Theorem 19.32 of [Margaris] p. 90. See 19.32v 1939 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) | ||
Theorem | 19.31 2235 | Theorem 19.31 of [Margaris] p. 90. See 19.31v 1940 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.41 2236 | Theorem 19.41 of [Margaris] p. 90. See 19.41v 1949 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.42 2237 | Theorem 19.42 of [Margaris] p. 90. See 19.42v 1953 for a version requiring fewer axioms. See exan 1861 for an immediate version. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.44 2238 | Theorem 19.44 of [Margaris] p. 90. See 19.44v 1992 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.45 2239 | Theorem 19.45 of [Margaris] p. 90. See 19.45v 1993 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | spimfv 2240* | Specialization, using implicit substitution. Version of spim 2395 with a disjoint variable condition, which does not require ax-13 2380. See spimvw 1995 for a version with two disjoint variable conditions, requiring fewer axioms, and spimv 2398 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | chvarfv 2241* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 2403 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | cbv3v2 2242* | Version of cbv3 2405 with two disjoint variable conditions, which does not require ax-11 2158 nor ax-13 2380. (Contributed by BJ, 24-Jun-2019.) (Proof shortened by Wolf Lammen, 30-Aug-2021.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | sbalex 2243* |
Equivalence of two ways to express proper substitution of a setvar for
another setvar disjoint from it in a formula. This proof of their
equivalence does not use df-sb 2065.
That both sides of the biconditional express proper substitution is proved by sb5 2277 and sb6 2085. The implication "to the left" is equs4v 1999 and does not require ax-10 2141 nor ax-12 2178. It also holds without disjoint variable condition if we allow more axioms (see equs4 2424). Theorem 6.2 of [Quine] p. 40. Theorem equs5 2468 replaces the disjoint variable condition with a distinctor antecedent. Theorem equs45f 2467 replaces the disjoint variable condition on 𝑥, 𝑡 with the nonfreeness hypothesis of 𝑡 in 𝜑. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2269 in place of equsex 2426 in order to remove dependency on ax-13 2380. (Revised by BJ, 20-Dec-2020.) Revise to remove dependency on df-sb 2065. (Revised by BJ, 21-Sep-2024.) (Proof shortened by SN, 14-Aug-2025.) |
⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | sbalexOLD 2244* | Obsolete version of sbalex 2243 as of 14-Aug-2025. (Contributed by NM, 14-Apr-2008.) (Revised by BJ, 20-Dec-2020.) (Revised by BJ, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | sb4av 2245* | Version of sb4a 2488 with a disjoint variable condition, which does not require ax-13 2380. The distinctor antecedent from sb4b 2483 is replaced by a disjoint variable condition in this theorem. (Contributed by NM, 2-Feb-2007.) (Revised by BJ, 15-Dec-2023.) |
⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | sbimd 2246 | Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2065. (Revised by Steven Nguyen, 9-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) | ||
Theorem | sbbid 2247 | Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2141 and ax-13 2380. (Revised by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2065. (Revised by Steven Nguyen, 11-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | ||
Theorem | 2sbbid 2248 | Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) | ||
Theorem | sbequ1 2249 | An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) |
⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) | ||
Theorem | sbequ2 2250 | An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Feb-2024.) |
⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) | ||
Theorem | stdpc7 2251 | One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 2027.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑥)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) | ||
Theorem | sbequ12 2252 | An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbequ12r 2253 | An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
Theorem | sbelx 2254* | Elimination of substitution. Also see sbel2x 2482. (Contributed by NM, 5-Aug-1993.) Avoid ax-13 2380. (Revised by Wolf Lammen, 6-Aug-2023.) Avoid ax-10 2141. (Revised by GG, 20-Aug-2023.) |
⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbequ12a 2255 | An equality theorem for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Jun-2019.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbid 2256 | An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbcov 2257* | A composition law for substitution. Version of sbco 2515 with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by GG, 7-Aug-2023.) (Proof shortened by SN, 26-Aug-2025.) |
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sbcovOLD 2258* | Obsolete version of sbcov 2257 as of 26-Aug-2025. (Contributed by NM, 14-May-1993.) (Revised by GG, 7-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sb6a 2259* | Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbid2vw 2260* | Reverting substitution yields the original expression. Based on fewer axioms than sbid2v 2517, at the expense of an extra distinct variable condition. (Contributed by NM, 14-May-1993.) (Revised by Wolf Lammen, 5-Aug-2023.) |
⊢ ([𝑡 / 𝑥][𝑥 / 𝑡]𝜑 ↔ 𝜑) | ||
Theorem | axc16g 2261* | Generalization of axc16 2262. Use the latter when sufficient. This proof only requires, on top of { ax-1 6-- ax-7 2007 }, Theorem ax12v 2179. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2380, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 7-Jul-2021.) Shorten axc11rv 2266. (Revised by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | axc16 2262* | Proof of older axiom ax-c16 38848. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16gb 2263* | Biconditional strengthening of axc16g 2261. (Contributed by NM, 15-May-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) | ||
Theorem | axc16nf 2264* | If dtru 5456 is false, then there is only one element in the universe, so everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2158. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 12-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) | ||
Theorem | axc11v 2265* | Version of axc11 2438 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2007 }, from ax12v 2179 (contrary to axc11 2438 which seems to require the full ax-12 2178 and ax-13 2380). (Contributed by NM, 16-May-2008.) (Revised by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | axc11rv 2266* | Version of axc11r 2374 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2007 }, from ax12v 2179 (contrary to axc11 2438 which seems to require the full ax-12 2178 and ax-13 2380, and to axc11r 2374 which seems to require the full ax-12 2178). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) | ||
Theorem | drsb2 2267 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | ||
Theorem | equsalv 2268* | An equivalence related to implicit substitution. Version of equsal 2425 with a disjoint variable condition, which does not require ax-13 2380. See equsalvw 2003 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv 2269. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexv 2269* | An equivalence related to implicit substitution. Version of equsex 2426 with a disjoint variable condition, which does not require ax-13 2380. See equsexvw 2004 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2268. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) Avoid ax-10 2141. (Revised by GG, 18-Nov-2024.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexvOLD 2270* | Obsolete version of equsexv 2269 as of 18-Nov-2024. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | sbft 2271 | Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbf 2272 | Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbf2 2273 | Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.) |
⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbh 2274 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | hbs1 2275* | The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 26-May-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1f 2276 | If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | sb5 2277* | Alternate definition of substitution when variables are disjoint. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1v 2087 and even needs no disjoint variable condition, see sb1 2486. Theorem sb5f 2506 replaces the disjoint variable condition with a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Revised by Wolf Lammen, 4-Sep-2023.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb5OLD 2278* | Obsolete version of sb5 2277 as of 21-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb56OLD 2279* | Obsolete version of sbalex 2243 as of 21-Sep-2024. Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct, namely, alternate definitions sb5 2277 and sb6 2085. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2065. The implication "to the left" is equs4 2424 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 1999, requires fewer axioms). Theorem equs45f 2467 replaces the disjoint variable condition with a nonfreeness hypothesis and equs5 2468 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2269 in place of equsex 2426 in order to remove dependency on ax-13 2380. (Revised by BJ, 20-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5av 2280* | A property related to substitution that replaces the distinctor from equs5 2468 to a disjoint variable condition. Version of equs5a 2465 with a disjoint variable condition, which does not require ax-13 2380. See also sbalex 2243. (Contributed by NM, 2-Feb-2007.) (Revised by GG, 15-Dec-2023.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | 2sb5 2281* | Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) | ||
Theorem | sbco4lemOLDOLD 2282* | Obsolete version of sbco4lem 2101 as of 12-Oct-2024. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | dfsb7 2283* | An alternate definition of proper substitution df-sb 2065. By introducing a dummy variable 𝑦 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑡, 𝑥, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑦 effectively insulates 𝑡 from 𝑥. To achieve this, we use a chain of two substitutions in the form of sb5 2277, first 𝑦 for 𝑥 then 𝑡 for 𝑦. Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2718. Theorem sb7h 2534 provides a version where 𝜑 and 𝑦 don't have to be distinct. (Contributed by NM, 28-Jan-2004.) Revise df-sb 2065. (Revised by BJ, 25-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Sep-2023.) |
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sbn 2284 | Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2065. (Revised by BJ, 25-Dec-2020.) |
⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) | ||
Theorem | sbex 2285* | Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | ||
Theorem | nf5 2286 | Alternate definition of df-nf 1782. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | ||
Theorem | nf6 2287 | An alternate definition of df-nf 1782. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | nf5d 2288 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
Theorem | nf5di 2289 | Since the converse holds by a1i 11, this inference shows that we can represent a not-free hypothesis with either Ⅎ𝑥𝜑 (inference form) or (𝜑 → Ⅎ𝑥𝜑) (deduction form). (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.) |
⊢ (𝜑 → Ⅎ𝑥𝜑) ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | 19.9h 2290 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.21h 2291 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See also 19.21 2208 and 19.21v 1938. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 19.23h 2292 | Theorem 19.23 of [Margaris] p. 90. See 19.23 2212. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | exlimih 2293 | Inference associated with 19.23 2212. See exlimiv 1929 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimdh 2294 | Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | equsalhw 2295* | Version of equsalh 2428 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexhv 2296* | An equivalence related to implicit substitution. Version of equsexh 2429 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | hba1 2297 | The setvar 𝑥 is not free in ∀𝑥𝜑. This corresponds to the axiom (4) of modal logic. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Oct-2021.) |
⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | hbnt 2298 | Closed theorem version of bound-variable hypothesis builder hbn 2299. (Contributed by NM, 10-May-1993.) (Proof shortened by Wolf Lammen, 14-Oct-2021.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbn 2299 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbnd 2300 | Deduction form of bound-variable hypothesis builder hbn 2299. (Contributed by NM, 3-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |