MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimih Structured version   Visualization version   GIF version

Theorem exlimih 2289
Description: Inference associated with 19.23 2207. See exlimiv 1934 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2144 . 2 𝑥𝜓
3 exlimih.2 . 2 (𝜑𝜓)
42, 3exlimi 2213 1 (∃𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator