MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2d Structured version   Visualization version   GIF version

Theorem 19.2d 1982
Description: Deduction associated with 19.2 1981. (Contributed by BJ, 12-May-2019.)
Hypothesis
Ref Expression
19.2d.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.2d (𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.2d
StepHypRef Expression
1 19.2d.1 . 2 (𝜑 → ∀𝑥𝜓)
2 19.2 1981 . 2 (∀𝑥𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  19.8w  1983  nexmo  2541  aevdemo  28725
  Copyright terms: Public domain W3C validator