| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexmo | Structured version Visualization version GIF version | ||
| Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022.) Avoid ax-11 2158. (Revised by Wolf Lammen, 16-Oct-2022.) |
| Ref | Expression |
|---|---|
| nexmo | ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝑥 = 𝑦)) | |
| 2 | 1 | alimi 1811 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alrimiv 1927 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 3 | 19.2d 1977 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | 5 | bicomi 224 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) |
| 7 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 8 | 4, 6, 7 | 3imtr4i 292 | 1 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2540 |
| This theorem is referenced by: exmo 2542 moabs 2543 exmoeu 2581 moanimlem 2618 moexexlem 2626 mo2icl 3702 mosubopt 5490 dff3 7095 disjALTV0 38777 |
| Copyright terms: Public domain | W3C validator |