Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nexmo | Structured version Visualization version GIF version |
Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022.) Avoid ax-11 2156. (Revised by Wolf Lammen, 16-Oct-2022.) |
Ref | Expression |
---|---|
nexmo | ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝑥 = 𝑦)) | |
2 | 1 | alimi 1815 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alrimiv 1931 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | 19.2d 1982 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | alnex 1785 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
6 | 5 | bicomi 223 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) |
7 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
8 | 4, 6, 7 | 3imtr4i 291 | 1 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-mo 2540 |
This theorem is referenced by: exmo 2542 moabs 2543 exmoeu 2581 moanimlem 2620 moexexlem 2628 mo2icl 3644 mosubopt 5418 dff3 6958 disjALTV0 36789 |
Copyright terms: Public domain | W3C validator |