MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexmo Structured version   Visualization version   GIF version

Theorem nexmo 2540
Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022.) Avoid ax-11 2158. (Revised by Wolf Lammen, 16-Oct-2022.)
Assertion
Ref Expression
nexmo (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem nexmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm2.21 123 . . . . 5 𝜑 → (𝜑𝑥 = 𝑦))
21alimi 1819 . . . 4 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
32alrimiv 1935 . . 3 (∀𝑥 ¬ 𝜑 → ∀𝑦𝑥(𝜑𝑥 = 𝑦))
4319.2d 1986 . 2 (∀𝑥 ¬ 𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 alnex 1789 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
65bicomi 227 . 2 (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑)
7 df-mo 2539 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
84, 6, 73imtr4i 295 1 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541  wex 1787  ∃*wmo 2537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976
This theorem depends on definitions:  df-bi 210  df-ex 1788  df-mo 2539
This theorem is referenced by:  exmo  2541  moabs  2542  exmoeu  2580  moanimlem  2619  moexexlem  2627  mo2icl  3627  mosubopt  5393  dff3  6919  disjALTV0  36599
  Copyright terms: Public domain W3C validator