|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nexmo | Structured version Visualization version GIF version | ||
| Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022.) Avoid ax-11 2156. (Revised by Wolf Lammen, 16-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| nexmo | ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝑥 = 𝑦)) | |
| 2 | 1 | alimi 1810 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 3 | 2 | alrimiv 1926 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 4 | 3 | 19.2d 1976 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 5 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | 5 | bicomi 224 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) | 
| 7 | df-mo 2539 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 8 | 4, 6, 7 | 3imtr4i 292 | 1 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 ∃*wmo 2537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-mo 2539 | 
| This theorem is referenced by: exmo 2541 moabs 2542 exmoeu 2580 moanimlem 2617 moexexlem 2625 mo2icl 3719 mosubopt 5514 dff3 7119 disjALTV0 38756 | 
| Copyright terms: Public domain | W3C validator |