MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2 Structured version   Visualization version   GIF version

Theorem 19.2 1975
Description: Theorem 19.2 of [Margaris] p. 89. This corresponds to the axiom (D) of modal logic (the other standard formulation being extru 1974). Note: This proof is very different from Margaris' because we only have Tarski's FOL axiom schemes available at this point. See the later 19.2g 2187 for a more conventional proof of a more general result, which uses additional axioms. The reverse implication is the defining property of effective nonfreeness (see df-nf 1783). (Contributed by NM, 2-Aug-2017.) Remove dependency on ax-7 2006. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.2 (∀𝑥𝜑 → ∃𝑥𝜑)

Proof of Theorem 19.2
StepHypRef Expression
1 id 22 . . 3 (𝜑𝜑)
21exgen 1973 . 2 𝑥(𝜑𝜑)
3219.35i 1877 1 (∀𝑥𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-6 1966
This theorem depends on definitions:  df-bi 207  df-ex 1779
This theorem is referenced by:  19.2d  1976  19.39  1983  19.24  1984  19.34  1985  eusv2i  5393  bj-ax6e  36670  bj-spnfw  36672  bj-modald  36675  wl-speqv  37524  wl-19.8eqv  37525  pm10.251  44384  ax6e2eq  44582  ax6e2eqVD  44932
  Copyright terms: Public domain W3C validator