MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2 Structured version   Visualization version   GIF version

Theorem 19.2 1976
Description: Theorem 19.2 of [Margaris] p. 89. This corresponds to the axiom (D) of modal logic (the other standard formulation being extru 1975). Note: This proof is very different from Margaris' because we only have Tarski's FOL axiom schemes available at this point. See the later 19.2g 2189 for a more conventional proof of a more general result, which uses additional axioms. The reverse implication is the defining property of effective nonfreeness (see df-nf 1782). (Contributed by NM, 2-Aug-2017.) Remove dependency on ax-7 2007. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.2 (∀𝑥𝜑 → ∃𝑥𝜑)

Proof of Theorem 19.2
StepHypRef Expression
1 id 22 . . 3 (𝜑𝜑)
21exgen 1974 . 2 𝑥(𝜑𝜑)
3219.35i 1877 1 (∀𝑥𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  19.2d  1977  19.39  1984  19.24  1985  19.34  1986  eusv2i  5412  bj-ax6e  36634  bj-spnfw  36636  bj-modald  36639  wl-speqv  37476  wl-19.8eqv  37477  pm10.251  44329  ax6e2eq  44528  ax6e2eqVD  44878
  Copyright terms: Public domain W3C validator