MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8w Structured version   Visualization version   GIF version

Theorem 19.8w 1983
Description: Weak version of 19.8a 2176 and instance of 19.2d 1982. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 4-Dec-2017.) (Revised by BJ, 31-Mar-2021.)
Hypothesis
Ref Expression
19.8w.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
19.8w (𝜑 → ∃𝑥𝜑)

Proof of Theorem 19.8w
StepHypRef Expression
1 19.8w.1 . 2 (𝜑 → ∀𝑥𝜑)
2119.2d 1982 1 (𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  19.8v  1987  euae  2661  wl-moae  35602
  Copyright terms: Public domain W3C validator