| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.36vv | Structured version Visualization version GIF version | ||
| Description: Theorem *11.43 in [WhiteheadRussell] p. 163. Theorem 19.36 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 19.36vv | ⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.36v 1987 | . . 3 ⊢ (∃𝑦(𝜑 → 𝜓) ↔ (∀𝑦𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ ∃𝑥(∀𝑦𝜑 → 𝜓)) |
| 3 | 19.36v 1987 | . 2 ⊢ (∃𝑥(∀𝑦𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |