| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.33-2 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 19.33-2 | ⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 868 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | 2alimi 1812 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) |
| 3 | olc 869 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | 2alimi 1812 | . 2 ⊢ (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) |
| 5 | 2, 4 | jaoi 858 | 1 ⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |