Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.33-2 Structured version   Visualization version   GIF version

Theorem 19.33-2 42000
Description: Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
19.33-2 ((∀𝑥𝑦𝜑 ∨ ∀𝑥𝑦𝜓) → ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem 19.33-2
StepHypRef Expression
1 orc 864 . . 3 (𝜑 → (𝜑𝜓))
212alimi 1815 . 2 (∀𝑥𝑦𝜑 → ∀𝑥𝑦(𝜑𝜓))
3 olc 865 . . 3 (𝜓 → (𝜑𝜓))
432alimi 1815 . 2 (∀𝑥𝑦𝜓 → ∀𝑥𝑦(𝜑𝜓))
52, 4jaoi 854 1 ((∀𝑥𝑦𝜑 ∨ ∀𝑥𝑦𝜓) → ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator