Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbii | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1850 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Copyright terms: Public domain | W3C validator |