| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.57 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.57 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm10.57 | ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ∨ ∃𝑥(𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1780 | . . . 4 ⊢ (∀𝑥 ¬ (𝜑 ∧ 𝜒) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜒)) | |
| 2 | imnan 399 | . . . . . 6 ⊢ ((𝜑 → ¬ 𝜒) ↔ ¬ (𝜑 ∧ 𝜒)) | |
| 3 | pm2.53 851 | . . . . . . . 8 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 4 | 3 | con1d 145 | . . . . . . 7 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜒 → 𝜓)) |
| 5 | 4 | imim3i 64 | . . . . . 6 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) → ((𝜑 → ¬ 𝜒) → (𝜑 → 𝜓))) |
| 6 | 2, 5 | biimtrrid 243 | . . . . 5 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) → (¬ (𝜑 ∧ 𝜒) → (𝜑 → 𝜓))) |
| 7 | 6 | al2imi 1814 | . . . 4 ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥 ¬ (𝜑 ∧ 𝜒) → ∀𝑥(𝜑 → 𝜓))) |
| 8 | 1, 7 | biimtrrid 243 | . . 3 ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (¬ ∃𝑥(𝜑 ∧ 𝜒) → ∀𝑥(𝜑 → 𝜓))) |
| 9 | 8 | con1d 145 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (¬ ∀𝑥(𝜑 → 𝜓) → ∃𝑥(𝜑 ∧ 𝜒))) |
| 10 | 9 | orrd 863 | 1 ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ∨ ∃𝑥(𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |