MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm Structured version   Visualization version   GIF version

Theorem 3anidm 1101
Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023.)
Assertion
Ref Expression
3anidm ((𝜑𝜑𝜑) ↔ 𝜑)

Proof of Theorem 3anidm
StepHypRef Expression
1 df-3an 1086 . 2 ((𝜑𝜑𝜑) ↔ ((𝜑𝜑) ∧ 𝜑))
2 anabs1 661 . 2 (((𝜑𝜑) ∧ 𝜑) ↔ (𝜑𝜑))
3 anidm 568 . 2 ((𝜑𝜑) ↔ 𝜑)
41, 2, 33bitri 300 1 ((𝜑𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  relcnvtr  6097
  Copyright terms: Public domain W3C validator