|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| 3anidm | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ ((𝜑 ∧ 𝜑) ∧ 𝜑)) | |
| 2 | anabs1 662 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜑) ↔ (𝜑 ∧ 𝜑)) | |
| 3 | anidm 564 | . 2 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 4 | 1, 2, 3 | 3bitri 297 | 1 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: relcnvtr 6287 | 
| Copyright terms: Public domain | W3C validator |