Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023.) |
Ref | Expression |
---|---|
3anidm | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ ((𝜑 ∧ 𝜑) ∧ 𝜑)) | |
2 | anabs1 661 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜑) ↔ (𝜑 ∧ 𝜑)) | |
3 | anidm 568 | . 2 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
4 | 1, 2, 3 | 3bitri 300 | 1 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: relcnvtr 6097 |
Copyright terms: Public domain | W3C validator |