![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcnvtr | Structured version Visualization version GIF version |
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
Ref | Expression |
---|---|
relcnvtr | ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm 1105 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) ↔ Rel 𝑅) | |
2 | relcnvtrg 6266 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | |
3 | 1, 2 | sylbir 234 | 1 ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 ⊆ wss 3949 ◡ccnv 5676 ∘ ccom 5681 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |