| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnvtr | Structured version Visualization version GIF version | ||
| Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| relcnvtr | ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm 1103 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) ↔ Rel 𝑅) | |
| 2 | relcnvtrg 6266 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ⊆ wss 3931 ◡ccnv 5664 ∘ ccom 5669 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |