MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvtr Structured version   Visualization version   GIF version

Theorem relcnvtr 6295
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.)
Assertion
Ref Expression
relcnvtr (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))

Proof of Theorem relcnvtr
StepHypRef Expression
1 3anidm 1104 . 2 ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) ↔ Rel 𝑅)
2 relcnvtrg 6294 . 2 ((Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
31, 2sylbir 235 1 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wss 3966  ccnv 5692  ccom 5697  Rel wrel 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator