| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabs1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anidm 1103 poirr 5586 frgr3v 30241 uun121p1 44749 |
| Copyright terms: Public domain | W3C validator |