|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anandi3r | Structured version Visualization version GIF version | ||
| Description: Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.) | 
| Ref | Expression | 
|---|---|
| anandi3r | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anan32 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 2 | anandir 677 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: refsymrel2 38568 refsymrel3 38569 dfeqvrel2 38591 dfeqvrel3 38592 i0oii 48817 alsi-no-surprise 49315 | 
| Copyright terms: Public domain | W3C validator |