Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bior1fand | Structured version Visualization version GIF version |
Description: A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
Ref | Expression |
---|---|
3biorfd.1 | ⊢ (𝜑 → ¬ 𝜃) |
Ref | Expression |
---|---|
3bior1fand | ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ ((𝜃 ∧ 𝜏) ∨ 𝜒 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3biorfd.1 | . . 3 ⊢ (𝜑 → ¬ 𝜃) | |
2 | 1 | intnanrd 489 | . 2 ⊢ (𝜑 → ¬ (𝜃 ∧ 𝜏)) |
3 | 2 | 3bior1fd 1473 | 1 ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ ((𝜃 ∧ 𝜏) ∨ 𝜒 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |