![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-3or | Structured version Visualization version GIF version |
Description: Define disjunction ('or') of three wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 920. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3o 1086 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
5 | 1, 2 | wo 845 | . . 3 wff (𝜑 ∨ 𝜓) |
6 | 5, 3 | wo 845 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 4, 6 | wb 205 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff setvar class |
This definition is referenced by: 3orass 1090 3orrot 1092 3ioran 1106 3ianor 1107 3orbi123i 1156 3ori 1424 3jao 1425 mpjao3danOLD 1432 3orbi123d 1435 3orim123d 1444 3or6 1447 3orel3 1486 3pm3.2ni 1488 cadan 1610 nf3or 1908 eueq3 3707 sspsstri 4102 eltpg 4689 rextpg 4703 tppreqb 4808 somo 5625 ordtri1 6397 ordeleqon 7771 bropopvvv 8078 soxp 8117 soseq 8147 swoso 8738 fsetexb 8860 en3lplem2 9610 cflim2 10260 entric 10554 entri2 10555 psslinpr 11028 ssxr 11287 relin01 11742 elznn0nn 12576 nn01to3 12929 xrnemnf 13101 xrnepnf 13102 xrsupss 13292 xrinfmss 13293 swrdnd 14608 swrdnnn0nd 14610 swrdnd0 14611 cshwshashlem1 17033 tosso 18376 pmltpc 25191 dyaddisj 25337 nosepdmlem 27410 mulsproplem13 27811 mulsproplem14 27812 legso 28105 lnhl 28121 cgracol 28334 colinearalg 28423 1to3vfriswmgr 29788 3o1cs 31958 3o2cs 31959 3o3cs 31960 fzone1 32266 tlt3 32395 cycpmco2 32550 3orit 34977 wl-df2-3mintru2 36669 mblfinlem2 36829 ts3or1 37324 ts3or2 37325 ts3or3 37326 3orrabdioph 41823 oneptri 42308 frege114d 42811 df3or2 42821 andi3or 43077 uneqsn 43078 clsk1indlem3 43096 sbc3or 43595 en3lplem2VD 43907 3orbi123VD 43913 sbc3orgVD 43914 sbcoreleleqVD 43922 el1fzopredsuc 46332 even3prm2 46686 reorelicc 47484 |
Copyright terms: Public domain | W3C validator |