![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-3or | Structured version Visualization version GIF version |
Description: Define disjunction ('or') of three wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 921. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3o 1087 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
5 | 1, 2 | wo 846 | . . 3 wff (𝜑 ∨ 𝜓) |
6 | 5, 3 | wo 846 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 4, 6 | wb 205 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff setvar class |
This definition is referenced by: 3orass 1091 3orrot 1093 3ioran 1107 3ianor 1108 3orbi123i 1157 3ori 1425 3jao 1426 mpjao3danOLD 1433 3orbi123d 1436 3orim123d 1445 3or6 1448 3orel3 1487 3pm3.2ni 1489 cadan 1611 nf3or 1909 eueq3 3708 sspsstri 4103 eltpg 4690 rextpg 4704 tppreqb 4809 somo 5626 ordtri1 6398 ordeleqon 7769 bropopvvv 8076 soxp 8115 soseq 8145 swoso 8736 fsetexb 8858 en3lplem2 9608 cflim2 10258 entric 10552 entri2 10553 psslinpr 11026 ssxr 11283 relin01 11738 elznn0nn 12572 nn01to3 12925 xrnemnf 13097 xrnepnf 13098 xrsupss 13288 xrinfmss 13289 swrdnd 14604 swrdnnn0nd 14606 swrdnd0 14607 cshwshashlem1 17029 tosso 18372 pmltpc 24967 dyaddisj 25113 nosepdmlem 27186 mulsproplem13 27584 mulsproplem14 27585 legso 27850 lnhl 27866 cgracol 28079 colinearalg 28168 1to3vfriswmgr 29533 3o1cs 31703 3o2cs 31704 3o3cs 31705 fzone1 32011 tlt3 32140 cycpmco2 32292 3orit 34685 wl-df2-3mintru2 36366 mblfinlem2 36526 ts3or1 37021 ts3or2 37022 ts3or3 37023 3orrabdioph 41521 oneptri 42006 frege114d 42509 df3or2 42519 andi3or 42775 uneqsn 42776 clsk1indlem3 42794 sbc3or 43293 en3lplem2VD 43605 3orbi123VD 43611 sbc3orgVD 43612 sbcoreleleqVD 43620 el1fzopredsuc 46033 even3prm2 46387 reorelicc 47396 |
Copyright terms: Public domain | W3C validator |