| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bior2fd | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 936. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
| Ref | Expression |
|---|---|
| 3biorfd.1 | ⊢ (𝜑 → ¬ 𝜃) |
| 3biorfd.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 3bior2fd | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biorfd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | biorf 936 | . . 3 ⊢ (¬ 𝜒 → (𝜓 ↔ (𝜒 ∨ 𝜓))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∨ 𝜓))) |
| 4 | 3biorfd.1 | . . 3 ⊢ (𝜑 → ¬ 𝜃) | |
| 5 | 4 | 3bior1fd 1476 | . 2 ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: usgrexmpl2nb0 47936 usgrexmpl2nb3 47939 |
| Copyright terms: Public domain | W3C validator |