Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bianfd 534 3bior1fand 1474 pr1eqbg 4784 iresn0n0 5952 fvmptopab 7308 wemappo 9238 axrepnd 10281 axunnd 10283 fzpreddisj 13234 sadadd2lem2 16085 smumullem 16127 nndvdslegcd 16140 divgcdnn 16150 sqgcd 16198 coprm 16344 isnmnd 18304 nfimdetndef 21646 mdetfval1 21647 ibladdlem 24889 lgsval2lem 26360 lgsval4a 26372 lgsdilem 26377 2sqcoprm 26488 addsqn2reurex2 26498 nbgrnself 27629 wwlks 28101 iswspthsnon 28122 clwwlknon1nloop 28364 clwwlknon1le1 28366 nfrgr2v 28537 hashxpe 31029 acycgr0v 33010 prclisacycgr 33013 fmlasucdisj 33261 frxp2 33718 frxp3 33724 nosepdmlem 33813 nodenselem8 33821 nosupbnd2lem1 33845 dfrdg4 34180 finxpreclem3 35491 finxpreclem5 35493 ibladdnclem 35760 dihatlat 39275 xppss12 40130 jm2.23 40734 ltnelicc 42925 limciccioolb 43052 dvmptfprodlem 43375 stoweidlem26 43457 fourierdlem12 43550 fourierdlem42 43580 divgcdoddALTV 45022 |
Copyright terms: Public domain | W3C validator |