![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 484 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: bianfd 536 3bior1fand 1477 pr1eqbg 4858 iresn0n0 6054 fvmptopabOLD 7464 frxp2 8130 frxp3 8137 wemappo 9544 axrepnd 10589 axunnd 10591 fzpreddisj 13550 sadadd2lem2 16391 smumullem 16433 nndvdslegcd 16446 divgcdnn 16456 sqgcd 16502 coprm 16648 isnmnd 18629 nfimdetndef 22091 mdetfval1 22092 ibladdlem 25337 lgsval2lem 26810 lgsval4a 26822 lgsdilem 26827 2sqcoprm 26938 addsqn2reurex2 26948 nosepdmlem 27186 nodenselem8 27194 nosupbnd2lem1 27218 nbgrnself 28616 wwlks 29089 iswspthsnon 29110 clwwlknon1nloop 29352 clwwlknon1le1 29354 nfrgr2v 29525 hashxpe 32019 acycgr0v 34139 prclisacycgr 34142 fmlasucdisj 34390 dfrdg4 34923 finxpreclem3 36274 finxpreclem5 36276 ibladdnclem 36544 dihatlat 40205 xppss12 41047 jm2.23 41735 rexanuz2nf 44203 ltnelicc 44210 limciccioolb 44337 dvmptfprodlem 44660 stoweidlem26 44742 fourierdlem12 44835 fourierdlem42 44865 divgcdoddALTV 46350 |
Copyright terms: Public domain | W3C validator |