![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bianfd 535 3bior1fand 1476 pr1eqbg 4856 iresn0n0 6051 fvmptopabOLD 7460 frxp2 8126 frxp3 8133 wemappo 9540 axrepnd 10585 axunnd 10587 fzpreddisj 13546 sadadd2lem2 16387 smumullem 16429 nndvdslegcd 16442 divgcdnn 16452 sqgcd 16498 coprm 16644 isnmnd 18625 nfimdetndef 22082 mdetfval1 22083 ibladdlem 25328 lgsval2lem 26799 lgsval4a 26811 lgsdilem 26816 2sqcoprm 26927 addsqn2reurex2 26937 nosepdmlem 27175 nodenselem8 27183 nosupbnd2lem1 27207 nbgrnself 28605 wwlks 29078 iswspthsnon 29099 clwwlknon1nloop 29341 clwwlknon1le1 29343 nfrgr2v 29514 hashxpe 32006 acycgr0v 34127 prclisacycgr 34130 fmlasucdisj 34378 dfrdg4 34911 finxpreclem3 36262 finxpreclem5 36264 ibladdnclem 36532 dihatlat 40193 xppss12 41043 jm2.23 41720 rexanuz2nf 44189 ltnelicc 44196 limciccioolb 44323 dvmptfprodlem 44646 stoweidlem26 44728 fourierdlem12 44821 fourierdlem42 44851 divgcdoddALTV 46336 |
Copyright terms: Public domain | W3C validator |