| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4804 iresn0n0 5998 frxp2 8069 frxp3 8076 wemappo 9430 axrepnd 10480 axunnd 10482 fzpreddisj 13468 sadadd2lem2 16356 smumullem 16398 nndvdslegcd 16411 divgcdnn 16421 sqgcd 16468 coprm 16617 isnmnd 18641 nfimdetndef 22499 mdetfval1 22500 ibladdlem 25743 lgsval2lem 27240 lgsval4a 27252 lgsdilem 27257 2sqcoprm 27368 addsqn2reurex2 27378 nosepdmlem 27617 nodenselem8 27625 nosupbnd2lem1 27649 pw2cut2 28377 nbgrnself 29332 wwlks 29808 iswspthsnon 29829 clwwlknon1nloop 30071 clwwlknon1le1 30073 nfrgr2v 30244 tpssad 32511 hashxpe 32781 acycgr0v 35184 prclisacycgr 35187 fmlasucdisj 35435 dfrdg4 35985 finxpreclem3 37427 finxpreclem5 37429 ibladdnclem 37716 dihatlat 41373 xppss12 42262 jm2.23 43029 rexanuz2nf 45530 ltnelicc 45537 limciccioolb 45661 dvmptfprodlem 45982 stoweidlem26 46064 fourierdlem12 46157 fourierdlem42 46187 divgcdoddALTV 47713 |
| Copyright terms: Public domain | W3C validator |