| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4810 iresn0n0 6010 frxp2 8083 frxp3 8090 wemappo 9446 axrepnd 10496 axunnd 10498 fzpreddisj 13480 sadadd2lem2 16368 smumullem 16410 nndvdslegcd 16423 divgcdnn 16433 sqgcd 16480 coprm 16629 isnmnd 18654 nfimdetndef 22524 mdetfval1 22525 ibladdlem 25768 lgsval2lem 27265 lgsval4a 27277 lgsdilem 27282 2sqcoprm 27393 addsqn2reurex2 27403 nosepdmlem 27642 nodenselem8 27650 nosupbnd2lem1 27674 pw2cut2 28402 nbgrnself 29358 wwlks 29834 iswspthsnon 29855 clwwlknon1nloop 30100 clwwlknon1le1 30102 nfrgr2v 30273 tpssad 32540 hashxpe 32815 esplyind 33659 acycgr0v 35264 prclisacycgr 35267 fmlasucdisj 35515 dfrdg4 36067 finxpreclem3 37510 finxpreclem5 37512 ibladdnclem 37789 dihatlat 41506 xppss12 42400 jm2.23 43153 rexanuz2nf 45652 ltnelicc 45659 limciccioolb 45783 dvmptfprodlem 46104 stoweidlem26 46186 fourierdlem12 46279 fourierdlem42 46309 divgcdoddALTV 47844 |
| Copyright terms: Public domain | W3C validator |