![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bianfd 534 3bior1fand 1472 pr1eqbg 4849 iresn0n0 6043 fvmptopabOLD 7456 frxp2 8124 frxp3 8131 wemappo 9540 axrepnd 10585 axunnd 10587 fzpreddisj 13547 sadadd2lem2 16388 smumullem 16430 nndvdslegcd 16443 divgcdnn 16453 sqgcd 16499 coprm 16645 isnmnd 18661 nfimdetndef 22413 mdetfval1 22414 ibladdlem 25671 lgsval2lem 27156 lgsval4a 27168 lgsdilem 27173 2sqcoprm 27284 addsqn2reurex2 27294 nosepdmlem 27532 nodenselem8 27540 nosupbnd2lem1 27564 nbgrnself 29085 wwlks 29558 iswspthsnon 29579 clwwlknon1nloop 29821 clwwlknon1le1 29823 nfrgr2v 29994 hashxpe 32488 acycgr0v 34628 prclisacycgr 34631 fmlasucdisj 34879 dfrdg4 35418 finxpreclem3 36764 finxpreclem5 36766 ibladdnclem 37034 dihatlat 40695 xppss12 41540 jm2.23 42224 rexanuz2nf 44688 ltnelicc 44695 limciccioolb 44822 dvmptfprodlem 45145 stoweidlem26 45227 fourierdlem12 45320 fourierdlem42 45350 divgcdoddALTV 46835 |
Copyright terms: Public domain | W3C validator |