| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4817 iresn0n0 6014 frxp2 8100 frxp3 8107 wemappo 9478 axrepnd 10523 axunnd 10525 fzpreddisj 13510 sadadd2lem2 16396 smumullem 16438 nndvdslegcd 16451 divgcdnn 16461 sqgcd 16508 coprm 16657 isnmnd 18641 nfimdetndef 22452 mdetfval1 22453 ibladdlem 25697 lgsval2lem 27194 lgsval4a 27206 lgsdilem 27211 2sqcoprm 27322 addsqn2reurex2 27332 nosepdmlem 27571 nodenselem8 27579 nosupbnd2lem1 27603 nbgrnself 29262 wwlks 29738 iswspthsnon 29759 clwwlknon1nloop 30001 clwwlknon1le1 30003 nfrgr2v 30174 tpssad 32441 hashxpe 32705 acycgr0v 35108 prclisacycgr 35111 fmlasucdisj 35359 dfrdg4 35912 finxpreclem3 37354 finxpreclem5 37356 ibladdnclem 37643 dihatlat 41301 xppss12 42190 jm2.23 42958 rexanuz2nf 45461 ltnelicc 45468 limciccioolb 45592 dvmptfprodlem 45915 stoweidlem26 45997 fourierdlem12 46090 fourierdlem42 46120 divgcdoddALTV 47656 |
| Copyright terms: Public domain | W3C validator |