| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4821 iresn0n0 6025 fvmptopabOLD 7444 frxp2 8123 frxp3 8130 wemappo 9502 axrepnd 10547 axunnd 10549 fzpreddisj 13534 sadadd2lem2 16420 smumullem 16462 nndvdslegcd 16475 divgcdnn 16485 sqgcd 16532 coprm 16681 isnmnd 18665 nfimdetndef 22476 mdetfval1 22477 ibladdlem 25721 lgsval2lem 27218 lgsval4a 27230 lgsdilem 27235 2sqcoprm 27346 addsqn2reurex2 27356 nosepdmlem 27595 nodenselem8 27603 nosupbnd2lem1 27627 nbgrnself 29286 wwlks 29765 iswspthsnon 29786 clwwlknon1nloop 30028 clwwlknon1le1 30030 nfrgr2v 30201 tpssad 32468 hashxpe 32732 acycgr0v 35135 prclisacycgr 35138 fmlasucdisj 35386 dfrdg4 35939 finxpreclem3 37381 finxpreclem5 37383 ibladdnclem 37670 dihatlat 41328 xppss12 42217 jm2.23 42985 rexanuz2nf 45488 ltnelicc 45495 limciccioolb 45619 dvmptfprodlem 45942 stoweidlem26 46024 fourierdlem12 46117 fourierdlem42 46147 divgcdoddALTV 47683 |
| Copyright terms: Public domain | W3C validator |