| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4838 iresn0n0 6046 fvmptopabOLD 7467 frxp2 8148 frxp3 8155 wemappo 9568 axrepnd 10613 axunnd 10615 fzpreddisj 13595 sadadd2lem2 16474 smumullem 16516 nndvdslegcd 16529 divgcdnn 16539 sqgcd 16586 coprm 16735 isnmnd 18721 nfimdetndef 22532 mdetfval1 22533 ibladdlem 25778 lgsval2lem 27275 lgsval4a 27287 lgsdilem 27292 2sqcoprm 27403 addsqn2reurex2 27413 nosepdmlem 27652 nodenselem8 27660 nosupbnd2lem1 27684 nbgrnself 29343 wwlks 29822 iswspthsnon 29843 clwwlknon1nloop 30085 clwwlknon1le1 30087 nfrgr2v 30258 tpssad 32525 hashxpe 32791 acycgr0v 35175 prclisacycgr 35178 fmlasucdisj 35426 dfrdg4 35974 finxpreclem3 37416 finxpreclem5 37418 ibladdnclem 37705 dihatlat 41358 xppss12 42247 jm2.23 42995 rexanuz2nf 45499 ltnelicc 45506 limciccioolb 45630 dvmptfprodlem 45953 stoweidlem26 46035 fourierdlem12 46128 fourierdlem42 46158 divgcdoddALTV 47676 |
| Copyright terms: Public domain | W3C validator |