| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfd 534 3bior1fand 1478 pr1eqbg 4811 iresn0n0 6009 frxp2 8084 frxp3 8091 wemappo 9460 axrepnd 10507 axunnd 10509 fzpreddisj 13494 sadadd2lem2 16379 smumullem 16421 nndvdslegcd 16434 divgcdnn 16444 sqgcd 16491 coprm 16640 isnmnd 18630 nfimdetndef 22492 mdetfval1 22493 ibladdlem 25737 lgsval2lem 27234 lgsval4a 27246 lgsdilem 27251 2sqcoprm 27362 addsqn2reurex2 27372 nosepdmlem 27611 nodenselem8 27619 nosupbnd2lem1 27643 nbgrnself 29322 wwlks 29798 iswspthsnon 29819 clwwlknon1nloop 30061 clwwlknon1le1 30063 nfrgr2v 30234 tpssad 32501 hashxpe 32765 acycgr0v 35123 prclisacycgr 35126 fmlasucdisj 35374 dfrdg4 35927 finxpreclem3 37369 finxpreclem5 37371 ibladdnclem 37658 dihatlat 41316 xppss12 42205 jm2.23 42972 rexanuz2nf 45475 ltnelicc 45482 limciccioolb 45606 dvmptfprodlem 45929 stoweidlem26 46011 fourierdlem12 46104 fourierdlem42 46134 divgcdoddALTV 47670 |
| Copyright terms: Public domain | W3C validator |