Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bianfd 535 3bior1fand 1475 pr1eqbg 4788 iresn0n0 5966 fvmptopabOLD 7339 wemappo 9317 axrepnd 10359 axunnd 10361 fzpreddisj 13314 sadadd2lem2 16166 smumullem 16208 nndvdslegcd 16221 divgcdnn 16231 sqgcd 16279 coprm 16425 isnmnd 18398 nfimdetndef 21747 mdetfval1 21748 ibladdlem 24993 lgsval2lem 26464 lgsval4a 26476 lgsdilem 26481 2sqcoprm 26592 addsqn2reurex2 26602 nbgrnself 27735 wwlks 28209 iswspthsnon 28230 clwwlknon1nloop 28472 clwwlknon1le1 28474 nfrgr2v 28645 hashxpe 31136 acycgr0v 33119 prclisacycgr 33122 fmlasucdisj 33370 frxp2 33800 frxp3 33806 nosepdmlem 33895 nodenselem8 33903 nosupbnd2lem1 33927 dfrdg4 34262 finxpreclem3 35573 finxpreclem5 35575 ibladdnclem 35842 dihatlat 39355 xppss12 40211 jm2.23 40825 ltnelicc 43042 limciccioolb 43169 dvmptfprodlem 43492 stoweidlem26 43574 fourierdlem12 43667 fourierdlem42 43697 divgcdoddALTV 45145 |
Copyright terms: Public domain | W3C validator |