![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 481 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: bianfd 533 3bior1fand 1474 pr1eqbg 4856 iresn0n0 6052 fvmptopabOLD 7466 frxp2 8132 frxp3 8139 wemappo 9546 axrepnd 10591 axunnd 10593 fzpreddisj 13554 sadadd2lem2 16395 smumullem 16437 nndvdslegcd 16450 divgcdnn 16460 sqgcd 16506 coprm 16652 isnmnd 18663 nfimdetndef 22311 mdetfval1 22312 ibladdlem 25569 lgsval2lem 27046 lgsval4a 27058 lgsdilem 27063 2sqcoprm 27174 addsqn2reurex2 27184 nosepdmlem 27422 nodenselem8 27430 nosupbnd2lem1 27454 nbgrnself 28883 wwlks 29356 iswspthsnon 29377 clwwlknon1nloop 29619 clwwlknon1le1 29621 nfrgr2v 29792 hashxpe 32286 acycgr0v 34437 prclisacycgr 34440 fmlasucdisj 34688 dfrdg4 35227 finxpreclem3 36577 finxpreclem5 36579 ibladdnclem 36847 dihatlat 40508 xppss12 41353 jm2.23 42037 rexanuz2nf 44501 ltnelicc 44508 limciccioolb 44635 dvmptfprodlem 44958 stoweidlem26 45040 fourierdlem12 45133 fourierdlem42 45163 divgcdoddALTV 46648 |
Copyright terms: Public domain | W3C validator |