![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bianfd 534 3bior1fand 1476 pr1eqbg 4881 iresn0n0 6083 fvmptopabOLD 7505 frxp2 8185 frxp3 8192 wemappo 9618 axrepnd 10663 axunnd 10665 fzpreddisj 13633 sadadd2lem2 16496 smumullem 16538 nndvdslegcd 16551 divgcdnn 16561 sqgcd 16609 coprm 16758 isnmnd 18776 nfimdetndef 22616 mdetfval1 22617 ibladdlem 25875 lgsval2lem 27369 lgsval4a 27381 lgsdilem 27386 2sqcoprm 27497 addsqn2reurex2 27507 nosepdmlem 27746 nodenselem8 27754 nosupbnd2lem1 27778 nbgrnself 29394 wwlks 29868 iswspthsnon 29889 clwwlknon1nloop 30131 clwwlknon1le1 30133 nfrgr2v 30304 hashxpe 32814 acycgr0v 35116 prclisacycgr 35119 fmlasucdisj 35367 dfrdg4 35915 finxpreclem3 37359 finxpreclem5 37361 ibladdnclem 37636 dihatlat 41291 xppss12 42222 jm2.23 42953 rexanuz2nf 45408 ltnelicc 45415 limciccioolb 45542 dvmptfprodlem 45865 stoweidlem26 45947 fourierdlem12 46040 fourierdlem42 46070 divgcdoddALTV 47556 |
Copyright terms: Public domain | W3C validator |