![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bianfd 534 3bior1fand 1475 pr1eqbg 4862 iresn0n0 6074 fvmptopabOLD 7488 frxp2 8168 frxp3 8175 wemappo 9587 axrepnd 10632 axunnd 10634 fzpreddisj 13610 sadadd2lem2 16484 smumullem 16526 nndvdslegcd 16539 divgcdnn 16549 sqgcd 16596 coprm 16745 isnmnd 18764 nfimdetndef 22611 mdetfval1 22612 ibladdlem 25870 lgsval2lem 27366 lgsval4a 27378 lgsdilem 27383 2sqcoprm 27494 addsqn2reurex2 27504 nosepdmlem 27743 nodenselem8 27751 nosupbnd2lem1 27775 nbgrnself 29391 wwlks 29865 iswspthsnon 29886 clwwlknon1nloop 30128 clwwlknon1le1 30130 nfrgr2v 30301 hashxpe 32817 acycgr0v 35133 prclisacycgr 35136 fmlasucdisj 35384 dfrdg4 35933 finxpreclem3 37376 finxpreclem5 37378 ibladdnclem 37663 dihatlat 41317 xppss12 42247 jm2.23 42985 rexanuz2nf 45443 ltnelicc 45450 limciccioolb 45577 dvmptfprodlem 45900 stoweidlem26 45982 fourierdlem12 46075 fourierdlem42 46105 divgcdoddALTV 47607 |
Copyright terms: Public domain | W3C validator |