Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ecase | Structured version Visualization version GIF version |
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
3ecase.1 | ⊢ (¬ 𝜑 → 𝜃) |
3ecase.2 | ⊢ (¬ 𝜓 → 𝜃) |
3ecase.3 | ⊢ (¬ 𝜒 → 𝜃) |
3ecase.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ecase | ⊢ 𝜃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecase.4 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 3ecase.1 | . . . 4 ⊢ (¬ 𝜑 → 𝜃) | |
4 | 3 | 2a1d 26 | . . 3 ⊢ (¬ 𝜑 → (𝜓 → (𝜒 → 𝜃))) |
5 | 2, 4 | pm2.61i 182 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
6 | 3ecase.2 | . 2 ⊢ (¬ 𝜓 → 𝜃) | |
7 | 3ecase.3 | . 2 ⊢ (¬ 𝜒 → 𝜃) | |
8 | 5, 6, 7 | pm2.61nii 184 | 1 ⊢ 𝜃 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |