| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4873 pssnn 9138 suppeqfsuppbi 9337 infsupprpr 9464 axdc3lem2 10411 ltexprlem7 11002 nn01to3 12907 xrsupsslem 13274 xrinfmsslem 13275 injresinjlem 13755 injresinj 13756 addmodlteq 13918 ssnn0fi 13957 fsuppmapnn0fiubex 13964 fsuppmapnn0fiub0 13965 nn0o1gt2 16358 cshwsidrepswmod0 17072 symgextf1 19358 psgnunilem4 19434 cmpsublem 23293 aalioulem5 26251 gausslemma2dlem0i 27282 2lgsoddprm 27334 axlowdimlem15 28890 nbusgrvtxm1 29313 nb3grprlem1 29314 lfgrwlkprop 29622 frgrnbnb 30229 frgrwopreglem4a 30246 frgrwopreg 30259 nnn1suc 42261 volicorescl 46558 iccpartiltu 47427 odz2prm2pw 47568 prmdvdsfmtnof1lem2 47590 nnsum3primesle9 47799 bgoldbtbndlem1 47810 clnbgrgrim 47938 grtriprop 47944 isgrtri 47946 grimgrtri 47952 grlimgrtri 47999 lindslinindsimp2lem5 48455 elfzolborelfzop1 48512 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |