Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version |
Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
Ref | Expression |
---|---|
2a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1 28 ad5ant125 1365 3ecase 1473 3elpr2eq 4838 pssnn 8951 pssnnOLD 9040 suppeqfsuppbi 9142 infsupprpr 9263 axdc3lem2 10207 ltexprlem7 10798 nn01to3 12681 xrsupsslem 13041 xrinfmsslem 13042 injresinjlem 13507 injresinj 13508 addmodlteq 13666 ssnn0fi 13705 fsuppmapnn0fiubex 13712 fsuppmapnn0fiub0 13713 nn0o1gt2 16090 cshwsidrepswmod0 16796 symgextf1 19029 psgnunilem4 19105 cmpsublem 22550 aalioulem5 25496 gausslemma2dlem0i 26512 2lgsoddprm 26564 axlowdimlem15 27324 nbusgrvtxm1 27746 nb3grprlem1 27747 lfgrwlkprop 28055 frgrnbnb 28657 frgrwopreglem4a 28674 frgrwopreg 28687 nnn1suc 40296 volicorescl 44091 iccpartiltu 44874 odz2prm2pw 45015 prmdvdsfmtnof1lem2 45037 nnsum3primesle9 45246 bgoldbtbndlem1 45257 lindslinindsimp2lem5 45803 elfzolborelfzop1 45860 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |