| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4858 pssnn 9078 suppeqfsuppbi 9263 infsupprpr 9390 axdc3lem2 10339 ltexprlem7 10930 nn01to3 12836 xrsupsslem 13203 xrinfmsslem 13204 injresinjlem 13687 injresinj 13688 addmodlteq 13850 ssnn0fi 13889 fsuppmapnn0fiubex 13896 fsuppmapnn0fiub0 13897 nn0o1gt2 16289 cshwsidrepswmod0 17003 symgextf1 19331 psgnunilem4 19407 cmpsublem 23312 aalioulem5 26269 gausslemma2dlem0i 27300 2lgsoddprm 27352 axlowdimlem15 28932 nbusgrvtxm1 29355 nb3grprlem1 29356 lfgrwlkprop 29662 frgrnbnb 30268 frgrwopreglem4a 30285 frgrwopreg 30298 nnn1suc 42298 volicorescl 46590 iccpartiltu 47452 odz2prm2pw 47593 prmdvdsfmtnof1lem2 47615 nnsum3primesle9 47824 bgoldbtbndlem1 47835 clnbgrgrim 47964 grtriprop 47971 isgrtri 47973 grimgrtri 47979 grlimgrtri 48033 lindslinindsimp2lem5 48493 elfzolborelfzop1 48550 nn0sumshdiglemB 48651 |
| Copyright terms: Public domain | W3C validator |