![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version |
Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
Ref | Expression |
---|---|
2a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1 28 ad5ant125 1365 3ecase 1473 3elpr2eq 4911 pssnn 9207 suppeqfsuppbi 9417 infsupprpr 9542 axdc3lem2 10489 ltexprlem7 11080 nn01to3 12981 xrsupsslem 13346 xrinfmsslem 13347 injresinjlem 13823 injresinj 13824 addmodlteq 13984 ssnn0fi 14023 fsuppmapnn0fiubex 14030 fsuppmapnn0fiub0 14031 nn0o1gt2 16415 cshwsidrepswmod0 17129 symgextf1 19454 psgnunilem4 19530 cmpsublem 23423 aalioulem5 26393 gausslemma2dlem0i 27423 2lgsoddprm 27475 axlowdimlem15 28986 nbusgrvtxm1 29411 nb3grprlem1 29412 lfgrwlkprop 29720 frgrnbnb 30322 frgrwopreglem4a 30339 frgrwopreg 30352 nnn1suc 42280 volicorescl 46509 iccpartiltu 47347 odz2prm2pw 47488 prmdvdsfmtnof1lem2 47510 nnsum3primesle9 47719 bgoldbtbndlem1 47730 clnbgrgrim 47840 grtriprop 47846 isgrtri 47848 grimgrtri 47852 grlimgrtri 47899 lindslinindsimp2lem5 48308 elfzolborelfzop1 48365 nn0sumshdiglemB 48470 |
Copyright terms: Public domain | W3C validator |