![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version |
Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
Ref | Expression |
---|---|
2a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1 28 ad5ant125 1366 3ecase 1474 3elpr2eq 4907 pssnn 9170 pssnnOLD 9267 suppeqfsuppbi 9379 infsupprpr 9501 axdc3lem2 10448 ltexprlem7 11039 nn01to3 12927 xrsupsslem 13288 xrinfmsslem 13289 injresinjlem 13754 injresinj 13755 addmodlteq 13913 ssnn0fi 13952 fsuppmapnn0fiubex 13959 fsuppmapnn0fiub0 13960 nn0o1gt2 16326 cshwsidrepswmod0 17030 symgextf1 19291 psgnunilem4 19367 cmpsublem 22910 aalioulem5 25856 gausslemma2dlem0i 26874 2lgsoddprm 26926 axlowdimlem15 28252 nbusgrvtxm1 28674 nb3grprlem1 28675 lfgrwlkprop 28982 frgrnbnb 29584 frgrwopreglem4a 29601 frgrwopreg 29614 nnn1suc 41268 volicorescl 45354 iccpartiltu 46175 odz2prm2pw 46316 prmdvdsfmtnof1lem2 46338 nnsum3primesle9 46547 bgoldbtbndlem1 46558 lindslinindsimp2lem5 47227 elfzolborelfzop1 47284 nn0sumshdiglemB 47390 |
Copyright terms: Public domain | W3C validator |