| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4860 pssnn 9092 suppeqfsuppbi 9288 infsupprpr 9415 axdc3lem2 10364 ltexprlem7 10955 nn01to3 12860 xrsupsslem 13227 xrinfmsslem 13228 injresinjlem 13708 injresinj 13709 addmodlteq 13871 ssnn0fi 13910 fsuppmapnn0fiubex 13917 fsuppmapnn0fiub0 13918 nn0o1gt2 16310 cshwsidrepswmod0 17024 symgextf1 19318 psgnunilem4 19394 cmpsublem 23302 aalioulem5 26260 gausslemma2dlem0i 27291 2lgsoddprm 27343 axlowdimlem15 28919 nbusgrvtxm1 29342 nb3grprlem1 29343 lfgrwlkprop 29649 frgrnbnb 30255 frgrwopreglem4a 30272 frgrwopreg 30285 nnn1suc 42239 volicorescl 46535 iccpartiltu 47407 odz2prm2pw 47548 prmdvdsfmtnof1lem2 47570 nnsum3primesle9 47779 bgoldbtbndlem1 47790 clnbgrgrim 47919 grtriprop 47926 isgrtri 47928 grimgrtri 47934 grlimgrtri 47988 lindslinindsimp2lem5 48448 elfzolborelfzop1 48505 nn0sumshdiglemB 48606 |
| Copyright terms: Public domain | W3C validator |