Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version |
Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
Ref | Expression |
---|---|
2a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1 28 ad5ant125 1364 3ecase 1472 3elpr2eq 4835 pssnn 8913 pssnnOLD 8969 suppeqfsuppbi 9072 infsupprpr 9193 axdc3lem2 10138 ltexprlem7 10729 nn01to3 12610 xrsupsslem 12970 xrinfmsslem 12971 injresinjlem 13435 injresinj 13436 addmodlteq 13594 ssnn0fi 13633 fsuppmapnn0fiubex 13640 fsuppmapnn0fiub0 13641 nn0o1gt2 16018 cshwsidrepswmod0 16724 symgextf1 18944 psgnunilem4 19020 cmpsublem 22458 aalioulem5 25401 gausslemma2dlem0i 26417 2lgsoddprm 26469 axlowdimlem15 27227 nbusgrvtxm1 27649 nb3grprlem1 27650 lfgrwlkprop 27957 frgrnbnb 28558 frgrwopreglem4a 28575 frgrwopreg 28588 nnn1suc 40217 volicorescl 43981 iccpartiltu 44762 odz2prm2pw 44903 prmdvdsfmtnof1lem2 44925 nnsum3primesle9 45134 bgoldbtbndlem1 45145 lindslinindsimp2lem5 45691 elfzolborelfzop1 45748 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |