![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version |
Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
Ref | Expression |
---|---|
2a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1 28 ad5ant125 1366 3ecase 1474 3elpr2eq 4930 pssnn 9234 suppeqfsuppbi 9448 infsupprpr 9573 axdc3lem2 10520 ltexprlem7 11111 nn01to3 13006 xrsupsslem 13369 xrinfmsslem 13370 injresinjlem 13837 injresinj 13838 addmodlteq 13997 ssnn0fi 14036 fsuppmapnn0fiubex 14043 fsuppmapnn0fiub0 14044 nn0o1gt2 16429 cshwsidrepswmod0 17142 symgextf1 19463 psgnunilem4 19539 cmpsublem 23428 aalioulem5 26396 gausslemma2dlem0i 27426 2lgsoddprm 27478 axlowdimlem15 28989 nbusgrvtxm1 29414 nb3grprlem1 29415 lfgrwlkprop 29723 frgrnbnb 30325 frgrwopreglem4a 30342 frgrwopreg 30355 nnn1suc 42255 volicorescl 46474 iccpartiltu 47296 odz2prm2pw 47437 prmdvdsfmtnof1lem2 47459 nnsum3primesle9 47668 bgoldbtbndlem1 47679 clnbgrgrim 47786 grtriprop 47792 isgrtri 47794 grimgrtri 47798 grlimgrtri 47820 lindslinindsimp2lem5 48191 elfzolborelfzop1 48248 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |