| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4857 pssnn 9085 suppeqfsuppbi 9270 infsupprpr 9397 axdc3lem2 10349 ltexprlem7 10940 nn01to3 12841 xrsupsslem 13208 xrinfmsslem 13209 injresinjlem 13692 injresinj 13693 addmodlteq 13855 ssnn0fi 13894 fsuppmapnn0fiubex 13901 fsuppmapnn0fiub0 13902 nn0o1gt2 16294 cshwsidrepswmod0 17008 symgextf1 19335 psgnunilem4 19411 cmpsublem 23315 aalioulem5 26272 gausslemma2dlem0i 27303 2lgsoddprm 27355 axlowdimlem15 28936 nbusgrvtxm1 29359 nb3grprlem1 29360 lfgrwlkprop 29666 frgrnbnb 30275 frgrwopreglem4a 30292 frgrwopreg 30305 nnn1suc 42384 volicorescl 46675 iccpartiltu 47546 odz2prm2pw 47687 prmdvdsfmtnof1lem2 47709 nnsum3primesle9 47918 bgoldbtbndlem1 47929 clnbgrgrim 48058 grtriprop 48065 isgrtri 48067 grimgrtri 48073 grlimgrtri 48127 lindslinindsimp2lem5 48587 elfzolborelfzop1 48644 nn0sumshdiglemB 48745 |
| Copyright terms: Public domain | W3C validator |