| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4887 pssnn 9187 suppeqfsuppbi 9396 infsupprpr 9523 axdc3lem2 10470 ltexprlem7 11061 nn01to3 12962 xrsupsslem 13328 xrinfmsslem 13329 injresinjlem 13808 injresinj 13809 addmodlteq 13969 ssnn0fi 14008 fsuppmapnn0fiubex 14015 fsuppmapnn0fiub0 14016 nn0o1gt2 16405 cshwsidrepswmod0 17119 symgextf1 19407 psgnunilem4 19483 cmpsublem 23342 aalioulem5 26301 gausslemma2dlem0i 27332 2lgsoddprm 27384 axlowdimlem15 28940 nbusgrvtxm1 29363 nb3grprlem1 29364 lfgrwlkprop 29672 frgrnbnb 30279 frgrwopreglem4a 30296 frgrwopreg 30309 nnn1suc 42283 volicorescl 46549 iccpartiltu 47403 odz2prm2pw 47544 prmdvdsfmtnof1lem2 47566 nnsum3primesle9 47775 bgoldbtbndlem1 47786 clnbgrgrim 47914 grtriprop 47920 isgrtri 47922 grimgrtri 47928 grlimgrtri 47975 lindslinindsimp2lem5 48405 elfzolborelfzop1 48462 nn0sumshdiglemB 48567 |
| Copyright terms: Public domain | W3C validator |