| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing two antecedents. Two applications of a1d 25. Deduction associated with 2a1 28 and 2a1i 12. (Contributed by BJ, 10-Aug-2020.) |
| Ref | Expression |
|---|---|
| 2a1d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2a1d | ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
| 3 | 2 | a1d 25 | 1 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1 28 ad5ant125 1368 3ecase 1476 3elpr2eq 4870 pssnn 9132 suppeqfsuppbi 9330 infsupprpr 9457 axdc3lem2 10404 ltexprlem7 10995 nn01to3 12900 xrsupsslem 13267 xrinfmsslem 13268 injresinjlem 13748 injresinj 13749 addmodlteq 13911 ssnn0fi 13950 fsuppmapnn0fiubex 13957 fsuppmapnn0fiub0 13958 nn0o1gt2 16351 cshwsidrepswmod0 17065 symgextf1 19351 psgnunilem4 19427 cmpsublem 23286 aalioulem5 26244 gausslemma2dlem0i 27275 2lgsoddprm 27327 axlowdimlem15 28883 nbusgrvtxm1 29306 nb3grprlem1 29307 lfgrwlkprop 29615 frgrnbnb 30222 frgrwopreglem4a 30239 frgrwopreg 30252 nnn1suc 42254 volicorescl 46551 iccpartiltu 47423 odz2prm2pw 47564 prmdvdsfmtnof1lem2 47586 nnsum3primesle9 47795 bgoldbtbndlem1 47806 clnbgrgrim 47934 grtriprop 47940 isgrtri 47942 grimgrtri 47948 grlimgrtri 47995 lindslinindsimp2lem5 48451 elfzolborelfzop1 48508 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |