MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61nii Structured version   Visualization version   GIF version

Theorem pm2.61nii 187
Description: Inference eliminating two antecedents. (Contributed by NM, 13-Jul-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Hypotheses
Ref Expression
pm2.61nii.1 (𝜑 → (𝜓𝜒))
pm2.61nii.2 𝜑𝜒)
pm2.61nii.3 𝜓𝜒)
Assertion
Ref Expression
pm2.61nii 𝜒

Proof of Theorem pm2.61nii
StepHypRef Expression
1 pm2.61nii.1 . . 3 (𝜑 → (𝜓𝜒))
2 pm2.61nii.3 . . 3 𝜓𝜒)
31, 2pm2.61d1 183 . 2 (𝜑𝜒)
4 pm2.61nii.2 . 2 𝜑𝜒)
53, 4pm2.61i 185 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  ecase  1033  3ecase  1476  prex  5325  nbgr0vtxlem  27443
  Copyright terms: Public domain W3C validator